1 |
ChongC V, VenkataramaniR, TarokhV. A new construction of 16-QAM Golay complementary sequences[J]. IEEE Transactions on Information Theory, 2003, 49(11): 2953-2959.
|
2 |
ChangC Y, LiY, HirataJ. New 64-QAM Golay complementary sequences[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2479-2485.
|
3 |
HuberK. Codes over Gaussian integers[J]. IEEE Transactions on Information Theory, 1994, 40(1): 207-216.
|
4 |
DengX M, FanP Z, SuehiroN. Sequences with zero correlation over Gaussian integers [J]. Electronics Letters, 2000, 36(6): 552-553.
|
5 |
陈晓玉, 许成谦, 李玉博. 新的最佳高斯整数序列的构造方法[J]. 电子与信息学报, 2014, 36(9): 2081-2085.
|
|
ChenX Y, XuC Q, LiY B. New constructions of perfect Gaussian integer sequences[J]. Journal of Electronics & Information Technology, 2014, 36(9):2081-2085. (in Chinese)
|
6 |
PengX P, XuC Q. New constructions of perfect Gaussian integer sequences of even length[J]. IEEE Communications Letters, 2014, 18(9): 1547-1550.
|
7 |
ChangH H, LiC P, LeeC D, et al. Perfect Gaussian integer sequences of arbitrary composite length[J]. IEEE Transactions on Information Theory, 2015, 61(7): 4107-4115.
|
8 |
HuW W, WangS H, LiC P. Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 6074-6079.
|
9 |
PeiS C, ChangK W. Arbitrary length perfect integer sequences using all-pass polynomial[J]. IEEE Signal Processing Letters, 2019, 26(8): 1112-1116.
|
10 |
YangY, TangX H, ZhouZ C. Perfect Gaussian integer sequences of odd prime length[J]. IEEE Signal Processing Letters, 2012, 19(10): 615-618.
|
11 |
MaX, WenQ, ZhangJ, et al. New perfect Gaussian integer sequences of period pq[J]. IEICE Transactions on Fundamentals of Electronics Communications & Computer Sciences, 2013, 96(11): 2290-2293.
|
12 |
李玉博, 陈邈, 刘涛, 等. 长度为奇素数的最佳高斯整数序列构造法[J]. 通信学报, 2018, 39(11): 190-197.
|
|
LiY B, ChenY, LiuT, et al. Constructions of perfect Gaussian integer sequences of odd prime length[J]. Journal on Communications, 2018, 39(11): 190-197. (in Chinese)
|
13 |
刘凯, 马国斌, 陈盼盼. 基于分圆类的最佳高斯整数序列构造[J]. 电子学报, 2019, 47(4): 806-811.
|
|
LiuK, MaG B, ChenP P. Construction of perfect Gaussian integer sequences based on cyclotomic classes[J]. Acta Electronica Sinica, 2019, 47(4): 806-811. (in Chinese)
|
14 |
ChenX J, LiC L, RongC M. Perfect Gaussian integer sequences from cyclic difference sets[A]. IEEE International Symposium on Information Theory[C]. Barcelona, Spain: IEEE, 2016. 115-119.
|
15 |
WangS H, ChangH H, LeeC D, et al. Further results on degree-2 perfect Gaussian integer sequences[J]. IET Communications, 2016, 10(12): 1542-1552.
|
16 |
LiuT, XuC Q, LiY B, LIUK. New perfect Gaussian integer sequences from cyclic difference sets[J]. IEICE Transactions on Fundamental of Electronics Communications and Computer Sciences, 2017, E100-A(12): 3067-3070.
|
17 |
PengX P, RenJ D, XuC Q, et al. Perfect Gaussian integer sequences of degree-4 using difference sets[J]. IEICE Transactions on Fundamentals of Electronics Communications & Computer Sciences, 2016, E99-A (12):2604-2608.
|
18 |
ChangK J, ChangH H. Perfect Gaussian integer sequences of period pk with degrees equal to or less than k+1[J]. IEEE Transactions on Communications, 2017, 65(9):3723-3733.
|
19 |
LeeC D, HongS H. Generation of long perfect Gaussian integer sequences[J]. IEEE Signal Processing Letters, 2017, 24(4): 515-519.
|
20 |
ArasuK T, DingC, HellesethT, et al. Almost difference sets and their sequences with optimal autocorrelation[J]. IEEE Transactions on Information Theory, 2001, 47(7):2934-2943.
|
21 |
LiuY C, ChenC W, SuY T. New constructions of zero-correlation zone sequences[J]. IEEE Transactions on Information Theory, 2013, 59(8): 4994-5007.
|
22 |
BenedettoJ J, KonstantinidisI, RangaswamyM. Phase-coded waveforms and their design[J]. IEEE Signal Processing Magazine, 2009, 26(1): 22-31.
|