1 |
ROUTS, QIZ, PETROSYANL S, et al. Effect of random nanostructured metallic environments on spontaneous emission of HITC dye[J]. Nanomaterials, 2020, 10(11): 2135.
|
2 |
STOURME, LEPERSM, ROBERTJ, et al. Spontaneous emission and energy shifts of a Rydberg rubidium atom close to an optical nanofiber[J]. Physical Review A, 2020, 101: 052508.
|
3 |
MOK W K, YOUJ B, ZHANGW Z, et al. Control of spontaneous emission of qubits from weak to strong coupling[J]. Physical Review A, 2019, 99: 053847.
|
4 |
SONIYAN, ASWATHYS, ANAGHAG S, et al. Radiative energy transfer assisted amplified spontaneous emission in asymmetric-coupled-waveguide structures[J]. Journal of Applied Physics, 2020, 128: 083104.
|
5 |
JINC Y, JOHNER, SWINKELSM Y, et al. Ultrafast non-local control of spontaneous emission[J]. Nature Nanotechnology, 2014, 9: 886 - 890.
|
6 |
KLEPPNERD. Inhibited spontaneous emission [J]. Physical Review Letters, 1981, 47: 233 - 236.
|
7 |
LINZ, PICKA, LONČARM, et al. Enhanced spontaneous emission at third-order dirac exceptional points in inverse-designed photonic crystals[J]. Physical Review Letters, 2016, 117: 107402.
|
8 |
ZHANGJ L, SUNS, BUREKM J, et al. Strongly cavity-enhanced spontaneous emission from silicon-vacancy centers in diamond[J]. Nano Letters, 2018, 18(2): 1360 - 1365.
|
9 |
KIMD H, DALÉOA, CHENX K, et al. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter[J]. Nature Photonics, 2018, 12: 98 - 104.
|
10 |
HEY Z, JIL J, WANGY Z, et al. Geometric control of collective spontaneous emission[J]. Physical Review Letters, 2020, 125: 213602.
|
11 |
YEL M, YIX J, WANGT B, et al. Enhancement and modulation of spontaneous emission near graphene-based hyperbolic metamaterials[J]. Materials Research Express, 2019, 6: 125803.
|
12 |
PURCELLE M. Spontaneous emission probabilities at radio frequencies[J]. Physical Review, 1946, 69(12): 681.
|
13 |
GOYP, RAIMONDJ M, GROSSM, HAROCHES. Observation of cavity-enhanced single-atom spontaneous emission[J]. Physical Review Letters, 1983, 50(24): 1903 - 1906.
|
14 |
LININGTONI E, GARRAWAYB M. Dissipation control in cavity QED with oscillating mode structures[J]. Physical Review A, 2008, 77(3): 033831.
|
15 |
CALAJÒG, RIZZUTOL, PASSANTER. Control of spontaneous emission of a single quantum emitter through a time-modulated photonic-band-gap environment[J]. Physical Review A, 2017, 96: 023802.
|
16 |
ZHANGS Q, LUJ B, LIH, et al. Research on system coherence evolution of different environmental models[J]. International Journal of Theoretical Physics, 2018, 57(4): 1004 - 1012.
|
17 |
ZHANGY J, MANZ X, XIAY J, GUOG C. Entanglement sudden death in band gaps[J]. The European Physical Journal D, 2010, 58(3):397 - 401.
|
18 |
邢容,谢双媛,许静平,羊亚平. 动态光子晶体环境下二能级原子的自发辐射场及频谱的特性[J]. 物理学报,2016, 65(19): 194204.
|
|
XINGRong, XIEShuang-yuan, XUJing-ping, YANGYa-ping. Characteristics of the spontaneous emission field and spectrum of a two-level atom in a dynamic photonic crystal[J]. Acta Physica Sinica, 2016, 65(19): 194204.(in Chinese)
|
19 |
VASEGHIB, HASHEMIH. Spontaneous emission control of quantum dots embedded in photonic crystals: effects of external fields and dimension[J]. Optics Communications, 2016, 369: 209 - 214.
|
20 |
黄仙山,刘海莲,羊亚平,石云龙. 运用动态Lorentz库实现对激发原子动力学特性的调控[J]. 物理学报,2011, 60(2): 024205.
|
|
HUANGXian-shan, LIUHai-lian, YANGYa-ping, SHIYun-long. Control of the evolution of an excited atom by using the dynamic Lorentzian reservior[J]. Acta Physica Sinica, 2011, 60(2): 024205.(in Chinese)
|
21 |
GARRAWAYB M. Nonperturbative decay of an atomic system in a cavity[J]. Physical Review A, 1997, 55(3): 2290 - 2303.
|