1 |
NakamotoS. Bitcoin: A peer-to-peer electronic cash system[EB/OL]. ,2020-2-13.
|
2 |
TschorschF, ScheuermannB. Bitcoin and beyond: A technical survey on decentralized digital currencies[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 2084 - 2123.
|
3 |
秦超霞, 郭兵, 沈艳, 等. 区块链的安全风险评估模型[J]. 电子学报, 2021, 49(1): 117 - 124.
|
|
QinC X, GuoB, ShenY, et al. Security risk assessment model of blockchain[J]. Acta Electronica Sinica, 2021, 49(1): 117 - 124.(in Chinese)
|
4 |
陈露, 相峰, 孙知信. 基于属性密码体制的区块链安全技术研究进展[J]. 电子学报, 2021, 49(1): 192 - 200.
|
|
ChenL, XiangF, SunZ X. A survey of blockchain security technologies based on attribute-based cryptography[J]. Acta Electronica Sinica, 2021, 49(1): 192 - 200.(in Chinese)
|
5 |
ContiM, Sandeep KumarE, LalC, et al. A survey on security and privacy issues of bitcoin[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 3416 - 3452.
|
6 |
BastiaanM. Preventing the 51%-attack: a stochastic analysis of two phase proof of work in bitcoin[EB/OL]., 2020-2-14.
|
7 |
MillerA, LaViola JrJ J. Anonymous byzantine consensus from moderately-hard puzzles: A model for bitcoin[EB/OL]. , 2020-2-13.
|
8 |
EyalI, SirerE G. Majority is not enough: Bitcoin mining is vulnerable[A]. International Conference on Financial Cryptography and Data Security[C]. Berlin, Heidelberg: Springer, 2014. 436 - 454.
|
9 |
BlanchetB. Security protocol verification: Symbolic and computational models[A]. International Conference on Principles of Security and Trust[C]. Tallinn, Estonia:Springer, 2012. 3 - 29.
|
10 |
GarayJ, KiayiasA, LeonardosN. The bitcoin backbone protocol: Analysis and applications[A]. Annual International Conference on the Theory and Applications of Cryptographic Techniques[C]. Sofia, Bulgaria: Springer, 2015. 281 - 310.
|
11 |
GarayJ, KiayiasA, LeonardosN. The bitcoin backbone protocol with chains of variable difficulty[A]. Annual International Cryptology Conference[C]. Cham: Springer,2017. 291 - 323.
|
12 |
KiayiasA, PanagiotakosG. Speed-security tradeoffs in blockchain protocols[EB/OL]. ,2016.
|
13 |
DasP, FaustS, LossJ. A formal treatment of deterministic wallets[A]. Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security[C]. London, United Kingdom: ACM, 2019. 651 - 668.
|
14 |
CremersC, HorvatM, HoylandJ, et al. A comprehensive symbolic analysis of TLS 1.3[A]. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security[C]. Dallas, Texas, USA:ACM,2017. 1773 - 1788.
|
15 |
BasinD, DreierJ, HirschiL, et al. A formal analysis of 5G authentication[A].Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security[A]. Toronto, Canada: ACM, 2018. 1383 - 1396.
|
16 |
XiongY, SuC, HuangW, et al. Smartverif: Push the limit of automation capability of verifying security protocols by dynamic strategies[A]. 29th {USENIX} Security Symposium ({USENIX} Security 20) [C]. USA:{USENIX} Association, 2020.253 - 270.
|
17 |
LoweG. A hierarchy of authentication specifications[A]. Proceedings 10th Computer Security Foundations Workshop[C]. Rockport, MA, USA: IEEE, 1997. 31 - 43.
|
18 |
üstersR K, TruderungT, VogtA. Accountability: definition and relation-ship to verifiability [A]. Proceedings of the 17th ACM conference on Computer and Communications Security[C]. Chicago, Illinois, USA: ACM, 2010. 526 - 535.
|
19 |
DreierJ, KassemA, LafourcadeP. Formal analysis of e-cash protocols[A]. 2015 12th International Joint Conference on e-Business and Telecommunications (ICETE)(Volum:04)[C]. Colmar, France: IEEE, 2015. 65 - 75.
|