1 |
朱慧. 圆柱形锂电池端面缺陷检测方法研究[D]. 沈阳:沈阳工业大学, 2019.
|
2 |
HEZ D, WANGY N, YINF, et al. Surface defect detection for high-speed rails using an inverse P-M diffusion model[J]. Sensor Review, 2016, 36(1): 86-97.
|
3 |
CHENT, WANGY, XIAOC, et al. A machine vision apparatus and method for can-end inspection[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(9): 1-12.
|
4 |
贺振东, 王耀南, 刘洁, 等. 基于背景差分的高铁钢轨表面缺陷图像分割[J]. 仪器仪表学报, 2016, 37(3): 640-649.
|
|
HEZhen-dong, WANGYao-nan, LIUJie, et al. Background differencing-based high-speed rail surface defect image segmentation[J]. Chinese Journal of Scientific Instrument, 2016, 37(3): 640-649. (in Chinese)
|
5 |
WANGJ, LIQ, GANJ, et al. Surface defect detection via entity sparsity pursuit with intrinsic priors[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1): 141-150.
|
6 |
LIUL, GUOC, WANGL, et al. Nondestructive visualization and quantitative characterization of defects in silicone polymer insulators based on laser shearography[J]. IEEE Sensors Journal, 2019, 19(15): 6508-6516.
|
7 |
LIW B, LUC H, ZHANGJ C. A lower envelope Weber contrast detection algorithm for steel bar surface pit defects[J]. Optics & Laser Technology, 2013, 45: 654-659.
|
8 |
苑玮琦, 郭绍陶. 圆柱型覆膜锂电池圆周面凹坑检测方法研究[J]. 仪器仪表学报, 2020, 41(2): 146-156.
|
|
YUANWei-qi, GUOShao-tao. Research on the detection method of pit on the cylindrical surface of cylindrical coated lithium battery[J]. Chinese Journal of Scientific Instrument, 2020, 41(2): 146-156. (in Chinese)
|
9 |
LIUK, WANGH, CHENH, et al. Steel surface defect detection using a new Haar-Weibull-variance model in unsupervised manner[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(10): 2585-2596.
|
10 |
闵永智, 岳彪, 马宏锋, 等.基于图像灰度梯度特征的钢轨表面缺陷检测[J]. 仪器仪表学报, 2018, 39(4): 220-229.
|
|
MINYong-zhi, YUEBiao, MAHong-feng, et al. Rail surface defects detection based on gray scale gradient characteristics of image [J]. Chinese Journal of Scientific Instrument, 2018, 39(4): 220-229. (in Chinese)
|
11 |
SUB, CHENH, ZHUY, et al. Classification of manufacturing defects in multicrystalline solar cells with novel feature descriptor[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68: 1-14.
|
12 |
曹义亲, 刘龙标. 基于缺陷比例限制的背景差分钢轨表面缺陷检测方法[J]. 计算机应用, 2020, 40(10): 3066-3074.
|
|
CAOYi-qin, LIULong-biao.Rail surface defect detection method based on background differential with defect proportion limitation[J]. Journal of Computer Applications, 2020, 40(10): 3066-3074. (in Chinese)
|
13 |
RENR, HUNGT, TANK C. A generic deep-learning-based approach for automated surface inspection[J]. IEEE Transactions on Cybernetics, 2018,48(3): 929-940.
|
14 |
JE-KANGP, BAE-KEUNK, JUN-HYUBP, et al. Machine learning-based imaging system for surface defect inspection[J]. International Journal of Precision Engineering & Manufacturing Green Technology, 2016,3(3): 303-310.
|
15 |
GUANS, LEIM, LUH. A steel surface defect recognition algorithm based on improved deep learning network model using feature visualization and quality evaluation[J]. IEEE Access, 2020, 8: 49885-49895.
|
16 |
CANNYJ. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
|
17 |
SHAKARJIC M. Least-squares fitting algorithms of the NIST algorithm testing system[J]. Journal of Research of the National Institute of Standards and Technology,1998,103(6): 633-641.
|
18 |
HUBERP J. Robust regression: asymptotics, conjectures and Monte Carlo[J]. The Annals of Statistics, 1973, 1(5): 799-821.
|