电子学报 ›› 2022, Vol. 50 ›› Issue (3): 726-752.DOI: 10.12263/DZXB.20211068
所属专题: 长摘要论文
余若峰, 杨威, 付耀文, 张文鹏
收稿日期:
2021-08-11
修回日期:
2021-12-29
出版日期:
2022-03-25
作者简介:
基金资助:
YU Ruo-feng, YANG Wei, FU Yao-wen, ZHANG Wen-peng
Received:
2021-08-11
Revised:
2021-12-29
Online:
2022-03-25
Published:
2022-03-25
Supported by:
摘要:
传统雷达系统的发射机与接收机采用开环工作模式,在动态复杂环境下探测目标时缺乏灵活性和稳健性.借鉴生物认知学习过程,认知雷达可以感知动态环境和目标信息,通过发射和接收端闭环反馈控制,实现全自适应探测和信号处理.本文介绍了认知雷达波形优化的基本框架,递进地梳理了面向检测、跟踪、成像、分类任务以及抗干扰认知波形优化的主要研究内容和研究进展,为面向单一任务及联合多任务的波形优化技术研究提供了纵向和横向的对比视角.在已有研究的基础上,本文分析了认知雷达波形优化的优势和挑战,指出认知波形优化技术中潜在的研究方向,包括知识有效性评价、人工智能认知波形优化、通用度量准则、知识辅助的高效优化算法等方面.
中图分类号:
余若峰, 杨威, 付耀文, 等. 面向不同雷达任务的认知波形优化综述[J]. 电子学报, 2022, 50(3): 726-752.
Ruo-feng YU, Wei YANG, Yao-wen FU, et al. A Review on Cognitive Waveform Optimization for Different Radar Missions[J]. Acta Electronica Sinica, 2022, 50(3): 726-752.
评价角度 | 适用任务 | 优化准则/目标函数 | 约束条件 |
---|---|---|---|
统计信号处理 | 检测 | 各类距离测度都能够用于评价任务性能,如信噪比(Signal-to-Noise Ratio,SNR)、信干噪比(Signal-to-Interference-plus-Noise Ratio,SINR)、信杂比(Signal-to-Clutter Ratio,SCR)、信号和杂波的相关性、 | 发射信号总能量约束、发射信号时间长度约束、发射信号有限带宽约束(近似约束,有限带宽会导致时域信号无限长)、发射信号幅度约束、约束雷达的分辨率和压缩旁瓣维持在可以接受的水平、约束模糊函数性能、频谱兼容性等 |
识别 | |||
模式识别 | 检测 | 检测概率、分类正确率、模板匹配误差等 | |
识别 | |||
估计理论 | 跟踪 | 各类估计误差,如各种形式的跟踪误差、目标像重构误差、克拉美罗限等 | |
成像 | |||
信息论 | 检测 | 目标冲激响应与接收回波之间的互信息等 | |
跟踪 | |||
成像 |
表1 不同雷达任务波形优化的优化准则和约束条件
评价角度 | 适用任务 | 优化准则/目标函数 | 约束条件 |
---|---|---|---|
统计信号处理 | 检测 | 各类距离测度都能够用于评价任务性能,如信噪比(Signal-to-Noise Ratio,SNR)、信干噪比(Signal-to-Interference-plus-Noise Ratio,SINR)、信杂比(Signal-to-Clutter Ratio,SCR)、信号和杂波的相关性、 | 发射信号总能量约束、发射信号时间长度约束、发射信号有限带宽约束(近似约束,有限带宽会导致时域信号无限长)、发射信号幅度约束、约束雷达的分辨率和压缩旁瓣维持在可以接受的水平、约束模糊函数性能、频谱兼容性等 |
识别 | |||
模式识别 | 检测 | 检测概率、分类正确率、模板匹配误差等 | |
识别 | |||
估计理论 | 跟踪 | 各类估计误差,如各种形式的跟踪误差、目标像重构误差、克拉美罗限等 | |
成像 | |||
信息论 | 检测 | 目标冲激响应与接收回波之间的互信息等 | |
跟踪 | |||
成像 |
1 | GINIF, RANGASWAMYM. Knowledge-Based Radar Detection, Tracking, and Classification[M]. Hoboken, USA: John Wiley & Sons, Inc, 2007. |
2 | JAKOBSENL, RATCLIFFEJ M, SURLYKKEA. Convergent acoustic field of view in echolocating bats[J]. Nature, 2013, 493: 93-96. |
3 | HAYKINS. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30-40. |
4 | GURBUZS Z, GRIFFITHSH D, CHARLISHA, et al. An overview of cognitive radar: Past, present, and future[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(12): 6-18. |
5 | HORNEC, RITCHIEM, GRIFFITHSH. Proposed ontology for cognitive radar systems[J]. IET Radar, Sonar & Navigation, 2018, 12(12): 1363-1370. |
6 | 黎湘, 范梅梅. 认知雷达及其关键技术研究进展[J]. 电子学报, 2012, 40(9): 1863-1870. |
LIX, FANM M. Research advance on cognitive radar and its key technology[J]. Acta Electronica Sinica, 2012, 40(9): 1863-1870. (in Chinese) | |
7 | 左群声, 王彤. 认知雷达导论[M]. 北京: 国防工业出版社, 2017. |
ZUOQ S, WANGT. Introduction to Cognitive Radar[M]. Beijing, China: National Defense Industry Press, 2017. (in Chinese) | |
8 | GINIF, DE MAIOA, PATTONL. Waveform Design and Diversity for Advanced Radar Systems[M]. London, UK: Institution of Engineering and Technology, 2012. |
9 | WICKSM C. A brief history of waveform diversity[C]// 2009 IEEE Radar Conference. Pasadena, USA: IEEE, 2009: 1-6. |
10 | BLUNTS D, MOKOLEE L. Overview of radar waveform diversity[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 2-42. |
11 | 崔国龙, 余显祥, 杨婧, 等. 认知雷达波形优化设计方法综述[J]. 雷达学报, 2019, 8(5): 537-557. |
CUIG L, YUX X, YANGJ, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537-557. (in Chinese) | |
12 | 王璐璐, 王宏强, 王满喜. 雷达目标检测的最优波形设计综述[J]. 雷达学报, 2016, 5(5): 487-498. |
WANGL L, WANGH Q, WANGM X. An overview of radar waveform optimization for target detection[J]. Journal of Radars, 2016, 5(5): 487-498. (in Chinese) | |
13 | 王建涛. 面向参数估计的认知雷达自适应发射波形优化技术研究[D]. 长沙: 国防科技大学, 2014. |
WANGJ T. Adaptive Waveform Optimization for Cognitive Radar Parameter Estimation[D]. Changsha, China: National University of Defense Technology, 2014. (in Chinese) | |
14 | 杨威. 基于有限集统计学理论的机动目标联合检测、跟踪与分类技术研究[D]. 长沙: 国防科技大学, 2012. |
YANGW. Research on Joint Detection, Tracking and Classification of Maneuvering Target Based on the Finite Set Statistics[D]. Changsha, China: National University of Defense Technology, 2012. (in Chinese) | |
15 | COCHRAND, SUVOROVAS, HOWARDS D, et al. Waveform libraries[J]. IEEE Signal Processing Magazine, 2009, 26(1): 12-21. |
16 | ZHANGJ D, ZHUD Y, ZHANGG. 5Multi-objective waveform design for cognitive radar[C]//Proceedings of 2011 IEEE CIE International Conference on Radar. Chengdu, China: IEEE, 2011: 580-583. |
17 | LIUW X, LUY L, LESTURGIEM. Optimal sparse waveform design for HFSWR system[C]//2007 International Waveform Diversity and Design Conference. Pisa, Italy: IEEE, 2007: 127-130. |
18 | WANGG H, LUY L. Sparse frequency transmit waveform design with soft power constraint by using PSO algorithm[C]//2008 IEEE Radar Conference. Rome, Italy: IEEE, 2008: 1-4. |
19 | SETLURP, RANGASWAMYM. Projected gradient waveform design for fully adaptive radar STAP[C]//2015 IEEE Radar Conference(RadarCon). Arlington, USA: IEEE, 2015: 1704-1709. |
20 | SUNY, BABUP, PALOMARD P. Majorization-minimization algorithms in signal processing, communications, and machine learning[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 794-816. |
21 | PATTONL K, RIGLINGB D. Phase retrieval for radar waveform optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3287-3302. |
22 | KAY S. Optimal signal design for detection of Gaussian point targets in stationary Gaussian clutter/reverberation[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 31-41. |
23 | JACKSONL, KAY S, VANKAYALAPATIN. Iterative method for nonlinear FM synthesis of radar signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 910-917. |
24 | GERCHBERGR W, SAXTONW O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1971, 35(2): 237-246. |
25 | TRESS H LVAN. Optimum signal design and processing for reverberation-limited environments[J]. IEEE Transactions on Military Electronics, 1965, 9(3): 212-229. |
26 | DELONGD, HOFSTETTERE. Optimum radar signal-filter pairs in a cluttered environment[J]. IEEE Transactions on Information Theory, 1970, 16(1): 89-90. |
27 | ARESM. Optimum burst waveforms for detection of targets in uniform range-extended clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1967, AES-3(1): 138-141. |
28 | SIBULL H, TITLEBAUME L. Signal design for detection of targets in clutter[J]. Proceedings of the IEEE, 1981, 69(4): 481-482. |
29 | KAYS M, THANOSJ H. Optimal transmit signal design for active sonar/radar[C]//2002 IEEE International Conference on Acoustics Speech and Signal Processing. Orlando, USA: IEEE, 2002: 1513-1516. |
30 | SPAFFORDL. Optimum radar signal processing in clutter[J]. IEEE Transactions on Information Theory, 1968, 14(5): 734-743. |
31 | MESIYAM F, MCLANEP J. Design of optimal radar signals subject to a fixed amplitude constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, AES-9(5): 679-687. |
32 | DELONGD, HOFSTETTERE. The design of clutter-resistant radar waveforms with limited dynamic range[J]. IEEE Transactions on Information Theory, 1969, 15(3): 376-385. |
33 | COHENA I. A nonlinear integer programming algorithm for the design of radar waveforms[C]//12nd Annual Allerton Conference on Circuit and System Theory. Urbana: USA: University of Illinois at Urbana, 1975: 411-420. |
34 | PILLAIS U, OHH S, YOULAD C, et al. Optimal transmit-receiver design in the presence of signal-dependent interference and channel noise[J]. IEEE Transactions on Information Theory, 2000, 46(2): 577-584. |
35 | ROMEROR A, BAE J, GOODMANN A. Theory and application of SNR and mutual information matched illumination waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 912-927. |
36 | 纠博. 宽带雷达波形优化设计方法[D]. 西安: 西安电子科技大学, 2009. |
JIU B. Study on Waveform Design of Wideband Radar[D]. Xi'an, China: Xidian University, 2009. (in Chinese) | |
37 | CHENC Y, VAIDYANATHANP P. MIMO radar waveform optimization with prior information of the extended target and clutter[J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3533-3544. |
38 | NAGHSHM M, SOLTANALIANM, STOICAP, et al. A Doppler robust design of transmit sequence and receive filter in the presence of signal-dependent interference[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 772-785. |
39 | AUBRYA, DE MAIOA, NAGHSHM M. Optimizing radar waveform and Doppler filter bank via generalized fractional programming[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1387-1399. |
40 | KARBASIS M, AUBRYA, CAROTENUTOV, et al. Knowledge-based design of space-time transmit code and receive filter for a multiple-input-multiple-output radar in signal-dependent interference[J]. IET Radar, Sonar & Navigation, 2015, 9(8): 1124-1135. |
41 | AUBRYA, DE MAIOA, BOJIANG. Ambiguity function shaping for cognitive radar via complex quartic optimization[J]. IEEE Transactions on Signal Processing, 2013, 61(22): 5603-5619. |
42 | STOICAP, HEH, LIJ. Optimization of the receive filter and transmit sequence for active sensing[J]. IEEE Transactions on Signal Processing, 2011, 60(4): 1730-1740. |
43 | WEIY, MENGH, LIUY, et al. Radar phase-modulated waveform design for extended target detection[J]. Tsinghua Science & Technology, 2011, 16(4): 364-370. |
44 | GONGX, MENGH, WEIY, et al. Phase-modulated waveform design for extended target detection in the presence of clutter[J]. Sensors, 2011, 11(7): 7162-7177. |
45 | XUL, LIUH, YINK, et al. Joint design of phase coded waveform and mismatched filter[C]//2015 IEEE Radar Conference. Johannesburg, South Africa: IEEE, 2015: 32-36. |
46 | ZHANGX, WANGK, LIUX. Optimization of waveform design in the fractional Fourier domain to improve the cognitive radar system[J]. Journal of Applied Remote Sensing, 2017, 11(1): 015004. |
47 | ZHUB, WANGK, LIUX. SAR optimum waveform design for target detection based on prior knowledge[C]//2012 Proceedings of the 20th European Signal Processing Conference. Bucharest, Romania: IEEE, 2012: 111-115. |
48 | ROSSETTIG, DELIGIANNISA, LAMBOTHARANS. Waveform design and receiver filter optimization for multistatic cognitive radar[C]//2016 IEEE Radar Conference. Philadelphia, USA: IEEE, 2016: 1-5. |
49 | ROSSETTIG, LAMBOTHARANS. Coordinated waveform design and receiver filter optimization for cognitive radar networks[C]//2016 IEEE Sensor Array and Multichannel Signal Processing Workshop. Rio de Janeiro, Brazil: IEEE, 2016: 1-5. |
50 | ZHUW, TANGJ. Robust design of transmit waveform and receive filter for colocated MIMO radar[J]. IEEE Signal Processing Letters, 2015, 22(11): 2112-2116. |
51 | CHENGX, AUBRYA, CIUONZOD, et al. Robust waveform and filter bank design of polarimetric radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 370-384. |
52 | GARREND A, OSBORNM K, ODOMA C, et al. Enhanced target detection and identification via optimised radar transmission pulse shape[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(3): 130. |
53 | DENGX, QIUC, CAOZ, et al. Waveform design for enhanced detection of extended target in signal-dependent interference[J]. IET Radar, Sonar & Navigation, 2012, 6(1): 30-38. |
54 | TANGB, TANGJ. Robust waveform design of wideband cognitive radar for extended target detection[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Shanghai, China: IEEE, 2016: 3096-3100. |
55 | SEN S. Constant-envelope waveform design for optimal target-detection and autocorrelation performances[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada: IEEE, 2013: 3851-3855. |
56 | SEN S, GLOVERC W. Optimal multicarrier phase-coded waveform design for detection of extended targets[C]//2013 IEEE Radar Conference. Ottawa, Canada: IEEE, 2013: 1-6. |
57 | YINF, DEBESC, ZOUBIRA M. Parametric waveform design using discrete prolate spheroidal sequences for enhanced detection of extended targets[J]. IEEE Transactions on Signal Processing, 2012, 60(9): 4525-4536. |
58 | YAOY, ZHAOJ, WUL. Adaptive extended binary phase-shift keying waveform design algorithm for extended target detection[J]. Journal of Applied Remote Sensing, 2019, 13(1): 016511. |
59 | DE MAIOA, DE NICOLAS, HUANGYONGWEI, et al. Code design to optimize radar detection performance under accuracy and similarity constraints[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5618-5629. |
60 | DE MAIOA, DE NICOLAS, HUANGY, et al. Code design for radar STAP via optimization theory[J]. IEEE Transactions on Signal Processing, 2010, 58(2): 679-694. |
61 | DE MAIOA, DE NICOLAS, HUANGYONGWEI, et al. Design of phase codes for radar performance optimization with a similarity constraint[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 610-621. |
62 | DE MAIOA, HUANGY, PIEZZOM, et al. Design of optimized radar codes with a peak to average power ratio constraint[J]. IEEE Transactions on Signal Processing, 2011, 59(6): 2683-2697. |
63 | DE MAIOA, PIEZZOM, FARINAA, et al. Pareto-optimal radar waveform design[C]//2010 International Waveform Diversity and Design Conference. Niagara Falls, Canada: IEEE, 2010: 224-228. |
64 | SOLTANALIANM, STOICAP. Designing unimodular codes via quadratic optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(5): 1221-1234. |
65 | WOODWARDP M. Probability and Information Theory, with Applications to Radar[M]. London, UK: Pergamon Press, 1964. |
66 | BELLM R. Information theory and radar waveform design[J]. IEEE Transactions on Information Theory, 1993, 39(5): 1578-1597. |
67 | 纠博, 刘宏伟, 何学辉, 等. 基于凸优化的宽带雷达波形优化方法[J]. 电波科学学报, 2009, 24(2): 264-269. |
JIU B, LIUH W, HEX H, et al. Method of broadband radar waveform design based on convex optimization[J]. Chinese Journal of Radio Science, 2009, 24(2): 264-269. (in Chinese) | |
68 | HAOT, CUIC, GONGY. Efficient low-PAR waveform design method for extended target estimation based on information theory in cognitive radar[J]. Entropy(Basel, Switzerland), 2019, 21(3): 261. |
69 | WANGL, ZHUW, ZHANGY, et al. Multi-target detection and adaptive waveform design for cognitive MIMO radar[J]. IEEE Sensors Journal, 2018, 18(24): 9962-9970. |
70 | DE MAIOA, LOPSM. Design principles of MIMO radar detectors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 886-898. |
71 | TANGB, ZHANGY, TANGJ. An efficient minorization maximization approach for MIMO radar waveform optimization via relative entropy[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 400-411. |
72 | SUNG, HEZ, TONGJ, et al. Mutual information-based waveform design for MIMO radar space-time adaptive processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 2909-2921. |
73 | CHENY F, NIJSUREY, YUENC, et al. Adaptive distributed MIMO radar waveform optimization based on mutual information[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1374-1385. |
74 | KARIMIV, MOHSENIR, SAMADIS. Adaptive OFDM waveform design for cognitive radar in signal-dependent clutter[J]. IEEE Systems Journal, 2020, 14(3): 3630-3640. |
75 | WANGB, CHENX, XINF M, et al. SINR- and MI-based maximin robust waveform design[J]. Entropy, 2019, 21(1): 33. |
76 | ROMEROR A, GOODMANN A. Waveform design in signal-dependent interference and application to target recognition with multiple transmissions[J]. IET Radar, Sonar & Navigation, 2009, 3(4): 328. |
77 | ZHUZ, KAY S, RAGHAVANR S. Information-theoretic optimal radar waveform design[J]. IEEE Signal Processing Letters, 2017, 24(3): 274-278. |
78 | XIAOY, DENGZ, WUT. Information-theoretic radar waveform design under the SINR constraint[J]. Entropy, 2020, 22(10): 1182. |
79 | LIY, LIH, SUNY. Waveform design based on J-divergence for MIMO radar detection[C]//2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference. Chongqing, China: IEEE, 2017: 971-975. |
80 | STOICAP, LIJ, XIEY. On probing signal design for MIMO radar[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4151-4161. |
81 | AHMEDA M, AHMADA A, FORTUNATIS, et al. A reinforcement learning based approach for multitarget detection in massive MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 2622-2636. |
82 | WANGL, FORTUNATIS, GRECOM S, et al. Reinforcement learning-based waveform optimization for MIMO multi-target detection[C]//2018 52nd Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, USA: IEEE, 2018: 1329-1333. |
83 | JIANGW, HAIMOVICHA M, SIMEONEO. End-to-end learning of waveform generation and detection for radar systems[C]//2019 53rd Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, USA: IEEE, 2019: 1672-1676. |
84 | THORNTONC E, KOZYM A, BUEHRERR M, et al. Deep reinforcement learning control for radar detection and tracking in congested spectral environments[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(4): 1335-1349. |
85 | JOHN-BAPTISTEP, SMITHG E, JONESA M, et al. Rapid waveform design through machine learning[C]//2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. Le gosier, Guadeloupe, France: IEEE, 2019: 659-663. |
86 | JINB, SUT, ZHANGW, et al. Joint optimization of predictive model and transmitted waveform for extended target tracking[C]//2014 12th International Conference on Signal Processing. Hangzhou, China: IEEE, 2014: 1914-1918. |
87 | FITZGERALDR J. Effects of range-Doppler coupling on chirp radar tracking accuracy[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974(4): 528-532. |
88 | HAYKINS. Cognition is the key to the next generation of radar systems[C]//2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop. Marco Island, USA: IEEE, 2009: 463-467. |
89 | HAYKINS, ZIA A, ARASARATNAMI, et al. Cognitive tracking radar[C]//2010 IEEE Radar Conference. Arlington, USA: IEEE, 2010: 1467-1470. |
90 | HAYKINS, XUEY, SETOODEHP. Cognitive radar: Step toward bridging the gap between neuroscience and engineering[J]. Proceedings of the IEEE, 2012, 100(11): 3102-3130. |
91 | SMITHG E, CAMMENGAZ, MITCHELLA, et al. Experiments with cognitive radar[C]//2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. Cancun, Mexico: IEEE, 2015: 293-296. |
92 | BELLK L, BAKERC J, SMITHG E, et al. Cognitive radar framework for target detection and tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1427-1439. |
93 | KERSHAWD J, EVANSR J. Optimal waveform selection for tracking systems[J]. IEEE Transactions on Information Theory, 1994, 40(5): 1536-1550. |
94 | KERSHAWD J, EVANSR J. Waveform selective probabilistic data association[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(4): 1180-1188. |
95 | SIRAS P, PAPANDREOU-SUPPAPPOLAA, MORRELLD. Dynamic configuration of time-varying waveforms for agile sensing and tracking in clutter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3207-3217. |
96 | GRISHINY, ROMANIUKR S, KULPAK S. Radar waveform diversity for tracking[C]//Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2009. Wilga, Poland: SPIE, 2009: 7502. |
97 | BENEDETTOJ J, KONSTANTINIDISI, RANGASWAMYM. Phase-coded waveforms and their design[J]. IEEE Signal Processing Magazine, 2009, 26(1): 22-31. |
98 | RAGOC, WILLETTP, BAR-SHALOMY. Detection-tracking performance with combined waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2): 612-624. |
99 | RUIXINN, WILLETTP, BAR-SHALOMY. Tracking considerations in selection of radar waveform for range and range-rate measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 467-487. |
100 | SAVAGEC O, MORANB. Waveform selection for maneuvering targets within an IMM framework[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1205-1214. |
101 | 王璐璐. 基于信息论的自适应波形设计[D]. 长沙: 国防科技大学, 2015. |
WANGL L. Adaptive Waveform Design Based on Information Theory[D]. Changsha, China: National University of Defense Technology, 2015. (in Chinese) | |
102 | GELFANDS B, FORTMANNT E, BAR-SHALOMY. Adaptive detection threshold optimization for tracking in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(2): 514-523. |
103 | HONGS, EVANSR J, SHINH S. Optimization of waveform and detection threshold for range and range-rate tracking in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1): 17-33. |
104 | WANGH Q, XIAH E, CHENGY Q, et al. An adaptive waveform-detection threshold joint optimization method for target tracking[J]. Journal of Central South University, 2013, 20(11): 3057-3064. |
105 | 杨军, 张群, 罗迎, 等. 基于压缩感知的认知雷达多目标跟踪方法[J]. 雷达学报, 2016, 5(1): 90-98. |
YANGJ, ZHANGQ, LUOY, et al. Method for multiple targets tracking in cognitive radar based on compressed sensing[J]. Journal of Radars, 2016, 5(1): 90-98. (in Chinese) | |
106 | DAIF Z, LIUH W, WANGP H, et al. Adaptive waveform design for range-spread target tracking[J]. Electronics Letters, 2010, 46(11): 793. |
107 | CHENP, QIC H, WUL N, et al. Waveform design for Kalman filter-based target scattering coefficient estimation in adaptive radar system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 11805-11817. |
108 | 戴奉周. 宽带雷达信号处理: 检测、杂波抑制与认知跟踪[D]. 西安: 西安电子科技大学, 2010. |
DAIF Z. Wideband Radar Signal Processing—Detection, Clutter Suppression and Cognitive Tracking[D]. Xi'an, China: Xidian University, 2010. (in Chinese) | |
109 | SIRAS P, LIY, PAPANDREOU-SUPPAPPOLAA. Waveform-agile sensing for tracking[J]. IEEE Signal Processing Magazine, 2009, 26(1): 53-64. |
110 | YANGY, BLUMR S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 330-343. |
111 | 檀甲甲, 张建秋. 跟踪机动目标的雷达波形选择新方法[J]. 系统工程与电子技术, 2011, 33(3): 515-522, 543. |
TANJ J, ZHANGJ Q. New waveform selection approach to tracking maneuver targets[J]. Systems Engineering and Electronics, 2011, 33(3): 515-522, 543. (in Chinese) | |
112 | JINB, JIU B, SUT, et al. Switched Kalman filter-interacting multiple model algorithm based on optimal autoregressive model for manoeuvring target tracking[J]. IET Radar, Sonar & Navigation, 2015, 9(2): 199-209. |
113 | SUVOROVAS, HOWARDS D, MORANW, et al. Waveform libraries for radar tracking applications: Maneuvering targets[C]//2006 40th Annual Conference on Information Sciences and Systems. Princeton, USA: IEEE, 2006: 1424-1428. |
114 | TURLAPATYA, JINY W. Parameter estimation and waveform design for cognitive radar by minimal free-energy principle[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada: IEEE, 2013: 6244-6248. |
115 | LESHEMA, NAPARSTEKO, NEHORAIA. Information theoretic adaptive radar waveform design for multiple extended targets[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 42-55. |
116 | CHAVALIP, NEHORAIA. Cognitive radar for target tracking in multipath scenarios[C]//2010 International Waveform Diversity and Design Conference. Niagara Falls, Canada: IEEE, 2010: 110-114. |
117 | GODRICHH, PETROPULUA P, POORH V. Power allocation strategies for target localization in distributed multiple-radar architectures[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3226-3240. |
118 | KYRIAKIDESI, TRUEBLOODT, MORRELLD, et al. Multiple target tracking using particle filtering and adaptive waveform design[C]//2008 42nd Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA: IEEE, 2008: 1188-1192. |
119 | ZHONGL, LIY, CHENGW, et al. Robust cognitive radar tracking based on adaptive unscented Kalman filter in uncertain environments[J]. IEEE Access, 2020, 8: 163405-163418. |
120 | FENGX, ZHAOY N, ZhaoZ F, et al. Cognitive tracking waveform design based on multiple model interaction and measurement information fusion[J]. IEEE Access, 2018, 6: 30680-30690. |
121 | SELVIE, BUEHRERR M, MARTONEA, et al. Reinforcement learning for adaptable bandwidth tracking radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3904-3921. |
122 | CHENEYM, BORDENB. Problems in synthetic-aperture radar imaging[J]. Inverse Problems, 2009, 25(12): 123005. |
123 | YOONY S, AMINM G. Compressed sensing technique for high-resolution radar imaging[C]//SPIE Defense and Security Symposium. Proc SPIE6968, Signal Processing, Sensor Fusion, and Target Recognition XVII. Orlando, USA: SPIE, 2008: 506-515. |
124 | ZHANGL, XINGM, QIUC W, et al. Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3824-3838. |
125 | LUOY, ZHANGQ, HONGW, et al. Waveform design and high-resolution imaging of cognitive radar based on compressive sensing[J]. Science China Information Sciences, 2012, 55(11): 2590-2603. |
126 | ZHUF, ZHANGQ, LUOY, et al. A novel cognitive ISAR imaging method with random stepped frequency chirp signal[J]. Science China Information Sciences, 2012, 55(8): 1910-1924. |
127 | 陈春晖, 张群, 罗迎. 一种步进频率信号认知雷达波形优化设计方法[J]. 航空学报, 2016, 37(7): 2276-2285. |
CHENC H, ZHANGQ, LUOY. A waveform optimization designing method for cognitive radar with stepped-frequency signal[J]. Acta Aeronauticaet Astronautica Sinica, 2016, 37(7): 2276-2285. (in Chinese) | |
128 | GUY J, GOODMANN A. Information-theoretic waveform design for Gaussian mixture radar target profiling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1528-1536. |
129 | LIF C, ZHAOY N, QIAOX L. A waveform design method for suppressing range sidelobes in desired intervals[J]. Signal Processing, 2014, 96: 203-211. |
130 | HEY P, DANGH X, TANX M. Compressive sensing radar imaging under low SINR via waveform optimization[C]//IET International Radar Conference 2013. Xi'an, China: IET, 2013: 1-4. |
131 | 龚逸帅, 张群, 陈怡君, 等. 面向多目标ISAR成像的MIMO雷达波形优化[J]. 空军工程大学学报(自然科学版), 2017, 18(2): 18-24. |
GONGY S, ZHANGQ, CHENY J, et al. A MIMO radar waveform optimization design for multi-target ISAR imaging[J]. Journal of Air Force Engineering University(Natural Science Edition), 2017, 18(2): 18-24. (in Chinese) | |
132 | 龚逸帅, 李开明, 张群, 等. 面向成像任务的宽带MIMO雷达认知波形设计[J]. 西安交通大学学报, 2018, 52(6): 114-121. |
GONGY S, LIK M, ZHANGQ, et al. Cognitive waveform optimization of wideband MIMO radars for imaging tasks[J]. Journal of Xi'an Jiaotong University, 2018, 52(6): 114-121. (in Chinese) | |
133 | HUX W, FENGC Q, WANGY C, et al. Adaptive waveform optimization for MIMO radar imaging based on sparse recovery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2898-2914. |
134 | ZHANGL, QIAOZ J, XINGM D, et al. High-resolution ISAR imaging with sparse stepped-frequency waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4630-4651. |
135 | ZHOUF, TIANX D, WANGY, et al. High-resolution ISAR imaging under low SNR with sparse stepped-frequency chirp signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8338-8348. |
136 | LIAOZ K, HUJ M, LUD W, et al. Motion analysis and compensation method for random stepped frequency radar using the pseudorandom code[J]. IEEE Access, 2018, 6: 57643-57654. |
137 | KANGM S, LEES J, LEES H, et al. ISAR imaging of high-speed maneuvering target using gapped stepped-frequency waveform and compressive sensing[J]. IEEE Transactions on Image Processing, 2017, 26(10): 5043-5056. |
138 | WEIS P, ZHANGL, MAH, et al. Sparse frequency waveform optimization for high-resolution ISAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 546-566. |
139 | WEIS P, ZHANGL, LIUH W. Joint frequency and PRF agility waveform optimization for high-resolution ISAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-23. |
140 | VARSLOT, YARMANC E, CHENEYM, et al. A variational approach to waveform design for synthetic-aperture imaging[J]. Inverse Problems & Imaging, 2007, 1(3): 577-592. |
141 | WANGK Z, LIUX Z. Cognitive SAR based on waveform design and optimum[C]//2012 International Waveform Diversity & Design Conference(WDD). Kauai, USA: IEEE, 2012: 256-259. |
142 | WANGK Z, LIUX Z, CHENG Z, et al. Waveform agile SAR sensor[C]//EUSAR 2012, 9th European Conference on Synthetic Aperture Radar. Nuremberg, Germany: VDE, 2012: 627-630. |
143 | ZHUB Q, GAOY S, WANGK Z, et al. Optimal waveform-based clutter suppression algorithm for recursive synthetic aperture radar imaging systems[J]. Journal of Applied Remote Sensing, 2016, 10(2): 025017. |
144 | ZHUB Q, SHENGH, GAOY S, et al. Waveform design for deterministic binary targets[C]//2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar. Singapore: IEEE, 2015: 421-424. |
145 | ABERMANK, AVIVS, ELDARY C. Adaptive frequency allocation in radar imaging: Towards cognitive SAR[C]//2017 IEEE Radar Conference. Seattle, USA: IEEE, 2017: 1348-1351. |
146 | MITCHELLA E, GARRYJ L, DULYA J, et al. Fully adaptive radar for variable resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 9810-9819. |
147 | IDRISSZ, RAJR G, NARAYANANR M. Matched illumination waveform optimization for radar imaging[C]//2020 IEEE International Radar Conference. Washington, USA: IEEE, 2020: 952-957. |
148 | IDRISSZ, RAJR G, NARAYANANR M. Waveform optimization for multistatic radar imaging using mutual information[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4): 2410-2425. |
149 | WANGW Q. MIMO SAR chirp modulation diversity waveform design[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1644-1648. |
150 | JEONS Y, KAM H, SHINS, et al. W-band MIMO FMCW radar system with simultaneous transmission of orthogonal waveforms for high-resolution imaging[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(11): 5051-5064. |
151 | JING, DENGY, WANGR, et al. An advanced nonlinear frequency modulation waveform for radar imaging with low Sidelobe[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6155-6168. |
152 | GOODMANN A, VENKATAP R, NEIFELDM A. Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 105-113. |
153 | GARREND A, ODOMA C, OSBORNM K, et al. Full-polarization matched-illumination for target detection and identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3): 824-837. |
154 | 纠博, 刘宏伟, 胡利平, 等. 针对目标识别的波形优化设计方法[J]. 电子与信息学报, 2009, 31(11): 2585-2590. |
JIU B, LIUH W, HUL P, et al. A method of waveform design for the recognition of radar targets[J]. Journal of Electronics & Information Technology, 2009, 31(11): 2585-2590. (in Chinese) | |
155 | SOWELAMS M, TEWFIKA H. Waveform selection in radar target classification[J]. IEEE Transactions on Information Theory, 2000, 46(3): 1014-1029. |
156 | KENNAUGHE M, MOFFATTD L. Transient and impulse response approximations[J]. Proceedings of the IEEE, 1965, 53(8): 893-901. |
157 | GJESSINGD T. Target Adaptive Matched Illumination Radar: Principles & Applications[M]. London, UK: Peter Peregrinus on Behalf of the Institution of Electrical Engineers, 1986. |
158 | PELLC. Book review: Target adaptive matched illumination radar: Principles and applications[J]. IEE Proceedings F Communications, Radar and Signal Processing, 1986, 133(6): 581-582. |
159 | GARREND A, OSBORNM K, ODOMA C. Optimization of single transmit pulse shape to maximize detection and identification of ground mobile targets[C]//Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA: IEEE, 2000: 1535-1539. |
160 | SHIRMANY D, LESHCHENKOS P, ORLENKOV M. Advantages and problems of wideband radar[C]//2003 Proceedings of the International Conference on Radar. Adelaide, Australia: IEEE, 2003: 15-21. |
161 | JING H, GAOX Z, LIX. The relationship between the radar bandwidth and recognition ability based on the ballistic target[C]//2008 International Conference on Radar. Adelaide, Australia: IEEE, 2008: 188-192. |
162 | GUERCIJ R, SCHUTZR W, HULSMANNJ D. Constrained optimum matched illumination-reception radar: US5146229[P]. 1992-09-08. |
163 | 纠博, 刘宏伟, 李丽亚, 等. 雷达波形优化的特征互信息方法[J]. 西安电子科技大学学报, 2009, 36(1): 139-144. |
JIU B, LIUH W, LIL Y, et al. Feature mutual information method for radar waveform optimization[J]. Journal of Xidian University, 2009, 36(1): 139-144. (in Chinese) | |
164 | KIMH S, GOODMANN A, LEEC K, et al. Improved waveform design for radar target classification[J]. Electronics Letters, 2017, 53(13): 879-881. |
165 | XUH P, ZHANGJ W, LIUW, et al. High-resolution radar waveform design based on target information maximization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3577-3587. |
166 | ZHOUR, ZHOUB, LIUL, et al. Improved waveform design for non-Gaussian target classification in cognitive radar[C]//IET International Radar Conference 2015. Hangzhou, China: Institution of Engineering and Technology, 2015: 4. |
167 | NIEHJ Y, ROMEROR A. Integrated range-Doppler map and extended target identification with adaptive waveform for cognitive radar[C]//2015 IEEE Radar Conference. Arlington, USA: IEEE, 2015: 1644-1649. |
168 | TANQ J O, ROMEROR A, JENND C. Target recognition with adaptive waveforms in cognitive radar using practical target RCS responses[C]//2018 IEEE Radar Conference. Oklahoma City, OK, USA: IEEE, 2018: 606-611. |
169 | ALSHIRAHS Z, MULGREWB. Improved 2-class target classification performance using radar waveform design[C]//2018 IEEE Radar Conference. Oklahoma City, OK, USA: IEEE, 2018: 458-461. |
170 | ALSHIRAHS Z, GISHKORIS, MULGREWB. Frequency-domain based waveform design for binary extended-target classification[C]//2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Brighton, UK: IEEE, 2019: 4450-4453. |
171 | FANM M, LIAOD P, DINGX F, et al. Waveform design for target recognition on the background of clutter[C]//2011 8th European Radar Conference. Manchester, UK: IEEE, 2011: 329-332. |
172 | 范梅梅, 廖东平, 丁小峰, 等. 基于WLS-TIR的多目标识别认知雷达波形自适应方法[J]. 电子学报, 2012, 40(1): 73-77. |
FANM M, LIAOD P, DINGX F, et al. Adaptive waveform design based on WLS-TIR for multiple targets recognition in cognitive radar[J]. Acta Electronica Sinica, 2012, 40(1): 73-77. (in Chinese) | |
173 | ROMEROR, GOODMANN A. Improved waveform design for target recognition with multiple transmissions[C]//2009 International Waveform Diversity and Design Conference. Kissimmee, USA: IEEE, 2009: 26-30. |
174 | ALSHIRAHS Z, GISHKORIS, MULGREWB. Frequency-based optimal radar waveform design for classification performance maximization using multiclass fisher analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3010-3021. |
175 | WUZ J, WANGC X, LIY C, et al. Extended target estimation and recognition based on multimodel approach and waveform diversity for cognitive radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14. |
176 | WEIY M, MENGH D, LIUY M, et al. Radar phase-coded waveform design for extended target recognition under detection constraints[C]//2011 IEEE Radar Conference. Kansas City, USA: IEEE, 2011: 1074-1079. |
177 | VENKATAP R, GOODMANN A. Novel iterative techniques for radar target discrimination[C]//2006 International Waveform Diversity & Design Conference. Lihue, USA: IEEE, 2006: 1-7. |
178 | BAE J, GOODMANN A. Target recognition with high-fidelity target signatures and adaptive waveforms in MIMO radar[C]//2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. Cancun, Mexico: IEEE, 2015: 285-288. |
179 | BAE J, GOODMANN A. Automatic target recognition with unknown orientation and adaptive waveforms[C]//2011 IEEE Radar Conference. Kansas City, USA: IEEE, 2011: 1000-1005. |
180 | KONGG, JUNGM, KOIVUNENV. Waveform recognition in multipath fading using autoencoder and CNN with Fourier synchrosqueezing transform[C]//2020 IEEE International Radar Conference. Washington, USA: IEEE, 2020: 612-617. |
181 | 李万福. 认知雷达理论及其波形选择算法研究[D]. 兰州: 兰州大学, 2015. |
LIW F. Study on Cognitive Radar Theory and WaveForm Selection Algorithm[D]. Lanzhou, China: Lanzhou University, 2015. (in Chinese) | |
182 | MARTONEA F, SHERBONDYK D, KOVARSKIYJ A, et al. Closing the loop on cognitive radar for spectrum sharing[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(9): 44-55. |
183 | GOVONIM A, LIH B, KOSINSKIJ A. Range-Doppler resolution of the linear-FM noise radar waveform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 658-664. |
184 | LIX Y, GUANJ, XUEY H, et al. High Doppler tolerance waveform design algorithm based on ambiguity function[C]//IET International Radar Conference 2015. Hangzhou, China: Institution of Engineering and Technology, 2015: 5. |
185 | KULPAJ S, KRAWCZYKG, KUROWSKAA. Pseudonoise waveform design for spectrum sharing systems[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 35(10): 30-39. |
186 | XUX J, FENGX Z. SAR imagery using chaotic carrier frequency agility pulses[C]//SPIE Defense, Security, and Sensing, Proc SPIE8021, Radar Sensor Technology XV. Orlando, USA: SPIE, 2011: 350-361. |
187 | DAIJ, HAOX H, LIP, et al. Antijamming design and analysis of a novel pulse compression radar signal based on radar identity and chaotic encryption[J]. IEEE Access, 2020, 8: 5873-5884. |
188 | WUK, ANDREW ZHANGJ A, HUANGX J, et al. Waveform design and accurate channel estimation for frequency-hopping MIMO radar-based communications[J]. IEEE Transactions on Communications, 2021, 69(2): 1244-1258. |
189 | DENGH. Polyphase code design for orthogonal netted radar systems[J]. IEEE Transactions on Signal Processing, 2004, 52(11): 3126-3135. |
190 | AKHTARJ. Orthogonal block coded ECCM schemes against repeat radar jammers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1218-1226. |
191 | CHUNY C, VAIDYANATHANP P. MIMO radar ambiguity properties and optimization using frequency-hopping waveforms[J]. IEEE Transactions on Signal Processing, 2008, 56(12): 5926-5936. |
192 | KHANH A, ZHANGY, JIC, et al. Optimizing polyphase sequences for orthogonal netted radar[J]. IEEE Signal Processing Letters, 2006, 13(10): 589-592. |
193 | GARDNERW A. Exploitation of spectral redundancy in cyclostationary signals[J]. IEEE Signal Processing Magazine, 1991, 8(2): 14-36. |
194 | 叶迎晖, 卢光跃, 弥寅. 利用样本特征的盲频谱感知算法[J]. 信号处理, 2016, 32(4): 444-450. |
YEY H, LUG Y, MIY. Employing sample features for blind spectrum sensing algorithm[J]. Journal of Signal Processing, 2016, 32(4): 444-450. (in Chinese) | |
195 | BRANDSETTERR W, SCHWARZJ, SEIDONA. Adaptive spread spectrum radar: US4679048[P]. 1987-07-07[2022-01-24]. |
196 | ROWEW, STOICAP, LIJ. Spectrally constrained waveform design[J]. IEEE Signal Processing Magazine, 2014, 31(3): 157-162. |
197 | GERLACHK, FREYM R, STEINERM J, et al. Spectral nulling on transmit via nonlinear FM radar waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1507-1515. |
198 | WUH, WANGQ, ZHOUL, et al. Spectral fitting method for designing radar sequence with spectral nulling and correlation constraints[J]. IET Radar, Sonar & Navigation, 2018, 12(11): 1260-1267. |
199 | PALAMÀR, GRIFFITHSH, WATSONF. Joint dynamic spectrum access and target-matched illumination for cognitive radar[J]. IET Radar, Sonar & Navigation, 2019, 13(5): 750-759. |
200 | HEH, STOICAP, LIJ. Waveform design with stopband and correlation constraints for cognitive radar[C]//2010 2nd International Workshop on Cognitive Information Processing. Elba Island, Italy: IEEE, 2010: 344-349. |
201 | MAIC Y, SUNJ P, ZHOUR, et al. Sparse frequency waveform design for radar-embedded communication[J]. Mathematical Problems in Engineering, 2016: 7270301. |
202 | FROSTS W, RIGLINGB. Sidelobe predictions for spectrally-disjoint radar waveforms[C]//2012 IEEE Radar Conference. Atlanta, GA, USA: IEEE, 2012: 247-252. |
203 | LINDENFELDM J. Sparse frequency transmit-and-receive waveform design[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 851-861. |
204 | PATTONL K, BRYANTC A, HIMEDB. Radar-centric design of waveforms with disjoint spectral support[C]//2012 IEEE Radar Conference. Atlanta, GA, USA: IEEE, 2012: 269-274. |
205 | WANGS L, BID P, LIJ P, et al. Joint detection and tracking algorithm for cognitive radar based on parallel structure of EKF and particle filter[J]. IET Radar, Sonar & Navigation, 2019, 13(11): 1990-1997. |
206 | 杨威, 付耀文, 潘晓刚, 等. 弱目标检测前跟踪技术研究综述[J]. 电子学报, 2014, 42(9): 1786-1793. |
YANGW, FUY W, PANX G. Track-before-detect technique for dim targets: An overview[J]. Acta Electronica Sinica, 2014, 42(9): 1786-1793. (in Chinese) | |
207 | DELISLEG Y, WUH Q. Moving target imaging and trajectory computation using ISAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 887-899. |
208 | LIUS B, BHATS, ZHANGJ J, et al. Design and performance of an integrated waveform-agile multi-modal track-before-detect sensing system[C]//2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA: IEEE, 2011: 1530-1534. |
209 | PIWOWARSKIR, O'DONNELLB, ZHANGJ J, et al. Waveform-agile track-before-detect for low observable targets[C]//2012 International Waveform Diversity & Design Conference. Kauai, USA: IEEE, 2012: 338-342. |
210 | ZHANGX W, WANGK Z, LIUX Z. Adaptive waveform optimization design for target detection in cognitive radar[J]. Journal of Applied Remote Sensing, 2017, 11(1): 015024. |
211 | STAMBOULIF, LIMBACHM, ROMMELT, et al. A cognitive synthetic aperture radar concept for tracking and imaging operation[C]//2019 20th International Radar Symposium. Ulm, Germany: IEEE, 2019: 1-9. |
212 | GIUSTIE, SAVERINOA L, MARTORELLAM, et al. A rule-based cognitive radar design for target detection and imaging[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 35(6): 34-44. |
213 | KURDZOJ M, CHOJ Y N, CHEONGB L, et al. A neural network approach for waveform generation and selection with multi-mission radar[C]//2019 IEEE Radar Conference. Boston, USA: IEEE, 2019: 1-6. |
214 | SEN S, TANGG G, NEHORAIA. Multiobjective optimization of OFDM radar waveform for target detection[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 639-652. |
215 | BJORNSONE, JORSWIECKE A, DEBBAHM, et al. Multiobjective signal processing optimization: The way to balance conflicting metrics in 5G systems[J]. IEEE Signal Processing Magazine, 2014, 31(6): 14-23. |
216 | GUERCIJ R. Cognitive radar: A knowledge-aided fully adaptive approach[C]//2010 IEEE Radar Conference. Arlington, USA: IEEE, 2010: 1365-1370. |
217 | CHENGY Q, WANGX Z, MORELANDEM, et al. Information geometry of target tracking sensor networks[J]. Information Fusion, 2013, 14(3): 311-326. |
218 | 李婕. 基于黎曼几何的MIMO雷达环境匹配波形设计方法研究[D]. 西安: 西安电子科技大学, 2020. |
LIJ. Environment-based MIMO Radar Waveform Design via Riemannian Geometric Approaches[D]. Xi'an, China: Xidian University, 2020. (in Chinese) |
[1] | 张洋, 位寅生, 于雷. 抗主瓣多假目标欺骗干扰EPC-MIMO波形自适应优化设计技术[J]. 电子学报, 2022, 50(3): 513-523. |
[2] | 周凯, 李德鑫, 粟毅, 何峰, 刘涛. 雷达脉冲压缩低旁瓣发射波形和非匹配滤波联合设计方法[J]. 电子学报, 2021, 49(9): 1701-1707. |
[3] | 王树亮, 毕大平, 阮怀林, 杜明洋, 潘继飞. 基于信息熵准则的认知雷达机动目标跟踪算法[J]. 电子学报, 2019, 47(6): 1277-1284. |
[4] | 谢岸宏, 朱立东, 翟继强, 李雄飞. 一种抗盲检测的直扩隐蔽信号设计方法[J]. 电子学报, 2018, 46(12): 2817-2823. |
[5] | 冯翔, 陈志坤, 李风从, 赵宜楠. 基于松弛交替投影的MIMO雷达相位编码波形设计[J]. 电子学报, 2016, 44(12): 2981-2988. |
[6] | 唐波, 张玉, 李科, 高辉. 杂波中MIMO雷达恒模波形及接收机联合优化算法研究[J]. 电子学报, 2014, 42(9): 1705-1711. |
[7] | 赵宜楠, 李风从, 王军, 乔晓林. 基于秩亏傅里叶变换的交替投影编码波形设计[J]. 电子学报, 2014, 42(6): 1216-1219. |
[8] | 贺亚鹏, 朱晓华, 李洪涛, 顾陈. 噪声干扰背景下压缩感知雷达波形优化设计[J]. 电子学报, 2014, 42(3): 469-476. |
[9] | 赵伟, 赵永波, 李慧, 刘峥. MIMO雷达正交频分非线性调频波形设计[J]. 电子学报, 2014, 42(11): 2331-2336. |
[10] | 李风从, 赵宜楠, 乔晓林. 零自相关区相位编码波形设计[J]. 电子学报, 2013, 41(12): 2499-2502. |
[11] | 黎湘, 范梅梅. 认知雷达及其关键技术研究进展[J]. 电子学报, 2012, 40(9): 1863-1870. |
[12] | 陈浩文, 黎湘, 庄钊文. 一种新兴的雷达体制——MIMO雷达[J]. 电子学报, 2012, 40(6): 1190-1198. |
[13] | 范梅梅;廖东平;丁小峰;黎湘. 基于WLS-TIR的多目标识别认知雷达波形自适应方法[J]. 电子学报, 2012, 40(1): 73-77. |
[14] | 蒋 飞;刘 中;胡 文;包伯成;. 任意频谱结构的连续混沌调频雷达波形设计[J]. 电子学报, 2010, 38(9): 2195-2198. |
[15] | 赵永波;水鹏朗;刘宏伟;董 玫. 基于线性调频信号的综合脉冲与孔径雷达波形设计方法[J]. 电子学报, 2010, 38(9): 2076-2082. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||