1 |
CHENC L P, LIUZ. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(99): 10⁃24.
|
2 |
SUIS, CHENC L P, TONGS, FENGS. Finite-time adaptive quantized control of stochastic nonlinear systems with input quantization: a broad learning system based identification method[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10): 8555⁃8565.
|
3 |
CHUF, LIANGT, CHENC L P, WANGX, MAX. Weighted broad learning system and its application in nonlinear industrial process modeling[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(8):3017⁃3031.
|
4 |
HANM, LIW, FENGS, QIUT, CHENC L P. Maximum information exploitation using broad learning system for large-scale chaotic time-series prediction[J]. IEEE Transactions on Neural Networks and Learning Systems,2021,32(6): 2320⁃2329.
|
5 |
KONGY, WANGX, CHENGY, CHENC L P. Hyperspectral imagery classification based on semi-supervised broad learning system[J]. Remote Sensing, 2018, 10(5): 685.
|
6 |
SHAOY, SANGN, GAOC, MAL. Spatial and class structure regularized sparse representation graph for semi-supervised hyperspectral image classification[J]. Pattern Recognition, 2018, 81: 81⁃94.
|
7 |
ZHAOH, ZHENGJ, DENGW, SONGY. Semi-supervised broad learning system based on manifold regularization and broad network[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(3): 983⁃994.
|
8 |
BELKINM, NIYOGIP, SINDHWANIV. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples[J]. Journal of Machine Learning Research, 2006, 7: 2399⁃2434.
|
9 |
ANISA, ELG A, AVESTIMEHRA S, ORTEGAA. A sampling theory perspective of graph-based semi-supervised learning[J]. IEEE Transactions on Information Theory, 2019, 65(4): 2322⁃2342.
|
10 |
冀中, 樊帅飞. 基于超图排序算法的视频摘要[J]. 电子学报, 2017, 45(5): 1035⁃1043.
|
|
JIZhong, FANShuai-fei. Video summarization based on hypergraph ranking[J]. Acta Electronica Sinica, 2017, 45(5): 1035⁃1043. (in Chinese)
|
11 |
HINTONG E, SALAKHUTDINOVR. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504⁃507.
|
12 |
高妮, 高岭, 贺毅岳, 王海. 基于自编码网络特征降维的轻量级入侵检测模型[J]. 电子学报, 2017, 45(3): 730⁃739.
|
|
GAONi, GAOLing, HEYi-yue, WANGHai. A lightweight intrusion detection model based on autoencoder network with feature reduction[J]. Acta Electronica Sinica, 2017, 45(3): 730⁃739. (in Chinese)
|
13 |
翟颖, 陈渤. 基于稳健变分自编码模型的雷达高分辨距离像目标识别算法[J]. 电子学报, 2020, 48(6): 1149⁃1155.
|
|
ZHAIYing, CHENBo. Study of radar high range resolution profiles target recognition based on auto-encoder[J]. Acta Electronica Sinica, 2020, 48(6): 1149⁃1155. (in Chinese)
|
14 |
李东瑾, 杨瑞娟, 李晓柏, 董睿杰. 基于栈式稀疏降噪自编码网络的辐射源调制识别[J]. 电子学报, 2020, 48(6): 1198⁃1204.
|
|
LIDong-jin, YANGRui-juan, LIXiao-bo, DONGRui-jie. Emitter signal modulation recognition based on stacked sparse denoising auto-encoders[J]. Acta Electronica Sinica, 2020, 48(6): 1198⁃1204. (in Chinese)
|
15 |
RUMMELHARTD E, HINTONG E, WILLIAMSR J. Learning internal representations by error propagation[J]. Readings in Cognitive Science, 1988, 323(2): 399⁃421.
|
16 |
QIUD, ZHENGL, ZHUJ, et al. Multiple improved residual networks for medical image super-resolution[J]. Future Generation Computer Systems, 2021: 200⁃208.
|
17 |
LECUNY, BOTTOUL. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278⁃2324.
|
18 |
LECUNY, HUANGF J, BOTTOUL. Learning methods for generic object recognition with invariance to pose and lighting[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR2004. Washington, DC, USA: IEEE, 2004:97⁃104.
|
19 |
VINCENTP, LAROCHELLEH, BENGIOY, MANZAGOLP A. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning. New York: Academic Press, 2008: 1096⁃1103.
|
20 |
HINTONG E, OSINDEROS, TEHY W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527⁃1554.
|
21 |
SALAKHUTDINOVR, HINTONG E. Deep boltzmann machines[J]. Journal of Machine Learning Research, 2009, 5(2): 1967⁃2006.
|
22 |
HANX, GHAEMIM S, ANDOK, PETERSONL S, GAUDILLIEREB,et al. Differential dynamics of the maternal immune system in healthy pregnancy and preeclampsia[J]. Frontiers in Immunology, 2019, 10: 1305. DOI: 10.3389/fimmu.2019.01305.
|