1 |
胡林林, 曾造金, 陈洪斌, 等. 毫米波/太赫兹扩展互作用速调管放大器的应用及研究进展[J]. 电子学报, 2019, 47(1): 211‐219.
|
|
HU Lin-lin, ZENG Zao-jin, CHEN Hong-Bin, et al. Application and development of extended interaction klystrons in millimeter-wave and terahertz band[J]. Acta Electronica Sinica, 2019, 47(1): 211‐219. (in Chinese)
|
2 |
姚常飞, 周明, 罗运生, 等. 基于肖特基势垒二极管的太赫兹固态倍频源和检测器研制[J]. 电子学报, 2013, 41(3): 438‐443.
|
|
YAO Chang-fei, ZHOU Ming, LUO Yun-sheng, et al. Development of terahertz frequency solid state multiply sources and sensors with schottky barrier diodes[J]. Acta Electronica Sinica, 2013, 41(3): 438‐443. (in Chinese)
|
3 |
刘松卓, 于伟华, 邓长江, 等. 面向通信系统的太赫兹调制技术进展现状[J]. 无线电通信技术, 2021, 47(1): 44‐50.
|
|
LIU Song-zhuo, YU Wei-hua, DENG Chang-jiang, et al. Recent progress of research on terahertz signal modulation technology for communication systems[J]. Radio Communications Technology, 2021, 47(1): 44‐50. (in Chinese)
|
4 |
HASSANIN A, SHAABAN A, EL-SAMIE F. Medical applications of image reconstruction using electromagnetic field in terahertz frequency range[C]//2019 International Symposium on Networks, Computers and Communications(ISNCC). Piscataway, NJ: IEEE, 2019: 1‐4.
|
5 |
张开春. 太赫兹扩展互作用振荡器的矩形耦合腔特性研究[J]. 电子学报, 2011, 39(3): 632‐635.
|
|
ZHANG Kai-chun. Study of characteristic of rectangular coupled-cavity slow-wave structure for extended interaction oscillator in terahertz band[J]. Acta Electronica Sinica, 2011, 39(3): 632‐635. (in Chinese)
|
6 |
胡林林, 蔡金赤, 陈洪斌. 太赫兹返波振荡器的应用及研究进展[J]. 电子学报, 2016, 44(4): 974‐982.
|
|
HU Lin-lin, CAI Jin-chi, CHEN Hong-bin. Applications and development of terahertz backward wave oscillators[J]. Acta Electronica Sinica, 2016, 44(4): 974‐982. (in Chinese)
|
7 |
吴振华, 张开春, 刘盛纲. 折叠波导结构的THz振荡辐射源研究[J]. 电子学报, 2009, 37(12): 2677‐2680.
|
|
WU Zhen-hua, ZHANG Kai-chun, LIU Sheng-gang. Research of THz folded waveguide oscillator radiation source[J]. Acta Electronica Sinica, 2009, 37(12): 2677‐2680. (in Chinese)
|
8 |
DOCHEV D, Desmaris V, Meledin D, et al. A technology demonstrator for 1.6-2.0 THz waveguide HEB receiver with a novel mixer layout[J]. Journal of Infrared, Millimeter and Terahertz Waves, 2011, 32(4): 451‐465.
|
9 |
MAESTRINI A, MEHDI I, SILES J V, et al. Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(2): 177‐185.
|
10 |
KOSUGI T, HAMADA H, TAKAHASHI H, et al. 250-300 GHz waveguide module with ridge-coupler and InP-HEMTIC[C]//2014 Asia-Pacific Microwave Conference (APMC). Piscataway, NJ: IEEE, 2014: 1133‐1135.
|
11 |
URTEAGA M, SEO M, HACKER J, et al. InP HBT integrated circuit technology for terahertz frequencies[C]//2010 IEEE Compound Semiconductor Integrated Circuit Symposium(CSICS), Piscataway, NJ: IEEE, 2010: 1‐4.
|
12 |
LEONG K, DEAL W R, RADISIC V, et al. A 340-380 GHz integrated CB-CPW-to-waveguide transition for sub millimeter-wave MMIC packaging[J]. IEEE Microwave & Wireless Components Letters, 2009, 19(6): 413‐415.
|
13 |
KANGASLAHTI P, SCHLECHT E, SAMOSKA L. Differential InP HEMT MMIC amplifiers embedded in waveguides[J]. Nasa Tech Briefs, 2009, 33(9): 35‐36.
|
14 |
LIU Jun, LV Xin, YU Wei-hua, et al. Design and realization of D-band InP MMIC amplifier with high-gain and low-noise[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 144‐148.
|
15 |
陈浩. W波段分谐波混频器设计[D]. 南京: 东南大学, 2004.
|
|
CHEN H. The Design of W Band Sub‐Harmonic Mixer[D]. Nanjing: Southeast University, 2004.
|