1 |
张亮. 改进的基于整数拆分形式标量乘快速算法[J]. 中国电子科学研究院学报, 2016, 11(5): 490-494.
|
|
ZHANGL. Improved fast scalar multiplication algorithm based on signed integer splitting form[J]. Journal of China Academy of Electronics and Information Technology, 2016, 11(5): 490-494. (in Chinese)
|
2 |
ISLAMM M, HOSSAINM S, HASANM K, et al. FPGA implementation of high-speed area-efficient processor for elliptic curve point multiplication over prime field[J]. IEEE Access, 2019, 7: 178811-178826.
|
3 |
KHLEBORODOVD. Fast elliptic curve point multiplication based on binary and binary non-adjacent scalar form methods[J]. Advances in Computational Mathematics, 2018, 44(4): 1275-1293.
|
4 |
徐明, 史量. 基于伪四维投射坐标的多基链标量乘法[J]. 通信学报, 2018, 39(5): 74-84.
|
|
XUM, SHIL. Pseudo 4D projective coordinate-based multi-base scalar multiplication[J]. Journal on Communications, 2018, 39(5): 74-84. (in Chinese)
|
5 |
OKEYAK, SCHMIDT-SAMOAK, SPAHNC, et al. Signed binary representations revisited[C]//Annual International Cryptology Conference. Berlin: Springer, 2004: 123-139.
|
6 |
李忠, 彭代渊. 基于滑动窗口技术的快速标量乘法[J]. 计算机科学, 2012, 39(6A): 54-56, 64.
|
|
LIZ, PENGD Y. Fast scalar multiplication based on sliding window technology[J]. Computer Science, 2012, 39(6A): 54-56, 64. (in Chinese)
|
7 |
ALIMORADIR, ARKIANH R, RAZAVIANS M J, et al. Scalar multiplication in elliptic curve libraries[J]. Journal of Discrete Mathematical Sciences and Cryptography, 2021, 24(3): 657-666.
|
8 |
LIUS G, QIG L, WANGX A. Fast and secure elliptic curve scalar multiplication algorithm based on a kind of deformed fibonacci-type series[C]//2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC). Xi'an: IEEE, 2015: 398-402.
|
9 |
HUANGH, NAN, XINGL, et al. An improved wNAF scalar-multiplication algorithm with low computational complexity by using prime precomputation[J]. IEEE Access, 2021, 9: 31546-31552.
|
10 |
史量, 徐明. DWNAF: 带门限的动态窗口的NAF标量乘法[J]. 计算机科学, 2017, 44(10): 159-164.
|
|
SHIL, XUM. DWNAF: A dynamic window NAF scalar multiplication with threshold[J]. Computer Science, 2017, 44(10): 159-164. (in Chinese)
|
11 |
LIUS G, SUNX J. A fast scalar multiplication algorithm based on alternate-zeckendorf representation[J]. International Journal of Network Security, 2018, 20(5): 931-937.
|
12 |
KhleborodovD. Fast elliptic curve point multiplication based on window Non-Adjacent Form method[J]. Applied Mathematics and Computation, 2018, 334: 41-59.
|
13 |
ZHANGZ B, WUL J, MUZ L, et al. A novel template attack on wNAF algorithm of ECC[C]//2014 Tenth International Conference on Computational Intelligence and Security. Beijing: IEEE, 2014: 671-675.
|
14 |
DANGERJ L, GUILLEYS, HOOGVORSTP, et al. Improving the Big Mac Attack on Elliptic Curve Cryptography[M]. Berlin: Springer, 2016: 374- 386.
|
15 |
DOUY Q, WENGJ, MAC G, et al. Fast scalar multiplication algorithm using constrained triple-base number system and its applications[C]//2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications(BWCCA). Zhengzhou: IEEE, 2015: 426-431.
|
16 |
CHUDNOVSKYD V, CHUDNOVSKYG V. Sequences of numbers generated by addition in formal groups and new primality and factorization tests[J]. Advances in Applied Mathematics, 1986, 7(4): 385-434.
|
17 |
WANGW B, FANS Q. Attacking OpenSSL ECDSA with a small amount of side-channel information[J]. Science China Information Sciences, 2017, 61(3): 1-14.
|
18 |
RASMIM, SOKHONA A, SH M, et al. A survey on single scalar point multiplication algorithms for Elliptic curves over Prime fields[J]. IOSR Journal of Computer Enginnering, 2016, 18(2): 31-47.
|