1 |
TEKINER E, ACAR A, ULUAGAC A S, et al. Sok: cryptojacking malware[C]//2021 IEEE European Symposium on Security and Privacy(EuroS&P). Vienna: IEEE, 2021: 120-139.
|
2 |
PASTRANA S, SUAREZ-TANGIL G. A first look at the crypto-mining malware ecosystem: A decade of unrestricted wealth[C]//Proceedings of the Internet Measurement Conference(IMC). Amsterdam: ACM, 2019: 73-86.
|
3 |
安天.六小时处置挖矿蠕虫的内网大规模感染事件[EB/OL]. (2019-09-25)[2021-09-15].
|
|
tice&report/research_report/ no 20190925.html.
|
4 |
YAZDINEJAD A, HADDADPAJOUH H, DEHGHANTANHA A, et al. Cryptocurrency malware hunting: A deep recurrent neural network approach[J]. Applied Soft Computing, 2020, 96: 106630.
|
5 |
NASEEM F, ARIS A, BABUN L, et al. MINOS: a lightweight real-time cryptojacking detection system[C]//Proceedings of the 28th Network and Distributed System Security Symposium. Virtual: The Internet Society, 2021: 21-25.
|
6 |
KONOTH R K, VAN WEGBERG R, MOONSAMY V, et al. Malicious cryptocurrency miners: Status and outlook[EB/OL]. (2019-01-29)[2021-09-15]. .
|
7 |
KOLTER J Z, MALOOF M A. Learning to detect and classify malicious executables in the wild[J]. Journal of Machine Learning Research, 2006, 7(12): 2721-2744.
|
8 |
NATARAJ L, KARTHIKEYAN S, JACOB G, et al. Malware images: visualization and automatic classification[C]//Proceedings of the 8th International Symposium on Visualization for Cyber Security. Pittsburgh: ACM, 2011: 1-7.
|
9 |
KIM J Y, BU S J, CHO S B. Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders[J]. Information Sciences, 2018, 460: 83-102.
|
10 |
SAXE J, BERLIN K. Deep neural network based malware detection using two dimensional binary program features[C]//2015 10th International Conference on Malicious and Unwanted Software(MALWARE). Fajardo: IEEE, 2015: 11-20.
|
11 |
RAFF E, BARKER J, SYLVESTER J, et al. Malware detection by eating a whole exe[C]//Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans: AAAI Press, 2018: 268-276.
|
12 |
RAFF E, FLESHMAN W, ZAK R, et al. Classifying sequences of extreme length with constant memory applied to malware detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2021: 9386-9394.
|
13 |
SCHULTZ M G, ESKIN E, ZADOK F, et al. Data mining methods for detection of new malicious executables[C]//Proceedings 2001 IEEE Symposium on Security and Privacy(S&P). Oakland: IEEE, 2000: 38-49.
|
14 |
SHAFIQ M Z, TABISH S M, MIRZA F, et al. Pe-miner: mining structural information to detect malicious executables in realtime[C]//Recent Advances in Intrusion Detection 12th International Symposium(RAID). Saint-Malo: Springer, 2009: 121-141.
|
15 |
ANDERSON H S, ROTH P. Ember: an open dataset for training static pe malware machine learning models[EB/OL]. (2018-04-16)[2021-09-15]. .
|
16 |
Microsoft Threat Intelligence Center. Threat actor leverages coin miner techniques to stay under the radar-here's how to spot them[EB/OL]. (2020-11-30)[2021-09-20]. .
|
17 |
CHAN K H R, YU Y, YOU C, et al. ReduNet: a white-box deep network from the principle of maximizing rate reduction[EB/OL]. (2021-11-29)[2021-09-15]. .
|
18 |
VAN BELLE V, VAN CALSTER B, VAN HUFFEL S, et al. Explaining support vector machines: a color based nomogram[J]. PloS ONE, 2016, 11(10): e0164568.
|
19 |
KIRASICH K, SMITH T, SADLER B. Random forest vs logistic regression: binary classification for heterogeneous datasets[J]. SMU Data Science Review, 2018, 1(3): 9.
|
20 |
AGHAKHANI H, GRITTI F, MECCA F, et al. When malware is packin'heat; limits of machine learning classifiers based on static analysis features[C]//27th Annual Network and Distributed System Security Symposium. San Diego: The Internet Society, 2020.
|
21 |
JORDANEY R, SHARAD K, DASH S K, et al. Transcend: detecting concept drift in malware classification models[C]//Proceedings of the 26th USENIX Security Symposium. Vancouver: USENIX Association, 2017: 625-642.
|
22 |
DEMETRIO L, BIGGIO B, LAGORIO G, et al. Functionality-preserving black-box optimization of adversarial windows malware[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 3469-3478.
|