1 |
张恒巍, 李涛, 黄世锐. 基于攻防微分博弈的网络安全防御决策方法[J]. 电子学报, 2018, 46(6): 1428-1435.
|
|
ZHANGH W, LIT, HUANGS R. Network defense decision-making method based on attack-defense differential game[J]. Acta Electronica Sinica, 2018, 46(6): 1428-1435. (in Chinese)
|
2 |
黄健明, 张恒巍. 基于随机演化博弈模型的网络防御策略选取方法[J]. 电子学报, 2018, 46(9): 2222-2228.
|
|
HUANGJ M, ZHANGH W. A method for selecting defense strategies based on stochastic evolutionary game Model[J]. Acta Electronica Sinica, 2018, 46(9): 2222-2228. (in Chinese)
|
3 |
YANGX Q, WEIK J, MAH Q, et al. Trojan horse attacks on counterfactual quantum key distribution[J]. Physics Letters A, 2016, 380(18-19): 1589-1592.
|
4 |
DABAROVA, SHARIPOVM, DADLANIA, et al. Heterogeneous projection of disruptive malware prevalence in mobile social networks[J]. IEEE Communications Letters, 2020, 24(8): 1673-1677.
|
5 |
LIH J, DANIELSJ J. Social significance of community structure: Statistical view[J]. Physical Review E, 2015, 91(1): 012801.
|
6 |
LIH J, WANGQ, LIUS F, et al. Exploring the trust management mechanism in self-organizing complex network based on game theory[J]. Physica A: Statistical Mechanics and its Applications, 2020, 542: 123514.
|
7 |
KEPHARTJ O, WHITES R. Directed-graph epidemiological models of computer viruses[C]//Proceedings of fourth annual computer virus and security conference. New York, USA: IEEE, 1991: 66-87.
|
8 |
LIUL J, WEIX D, ZHANGN M. Global stability of a network-based SIRS epidemic model with nonmonotone incidence rate[J]. Physica A: Statistical Mechanics and its Applications, 2018, 515: 587-599.
|
9 |
CAIY L, KANGY, WANGW M. A stochastic SIRS epidemic model with nonlinear incidence rate[J]. Applied Mathematics and Computation, 2017, 305: 221-240.
|
10 |
李黎, 张瑞芳, 杜娜娜, 柳寰宇. 基于有限临时删边的病毒传播控制策略[J]. 南京大学学报(自然科学), 2019, 55(4): 651-659.
|
|
LIL, ZHANGR F, DUN N, LIUH Y. Virus propagation control strategy based on limited temporary links removed[J]. Journal of Nanjing University(Natural Science), 2019, 55(4): 651-659. (in Chinese)
|
11 |
UPADHYAYR K, KUMARIS, MISRAA K. Modeling the virus dynamics in computer network with SVEIR model and nonlinear incident rate[J]. Journal of Applied Mathematics and Computing, 2016, 54(1): 485-509.
|
12 |
LANZA, ROGERSD, ALFORDT L. An epidemic model of malware virus with quarantine[J]. Journal of Advances in Mathematics and Computer Science, 2019, 33(4): 1-10.
|
13 |
王亚奇, 蒋国平. 考虑网络流量的无标度网络病毒免疫策略研究[J]. 物理学报, 2011, 60(6): 060202(1-8.
|
|
WANGY Q, JIANGG P. Epidemic immunization on scale-free networks with traffic flow[J]. Acta Physica Sinica, 2011, 60(6): 060202(1-8).(in Chinese)
|
14 |
张晓潘, 袁凌云. 具有时滞-扩散作用的无线传感网络病毒传播模型的振荡动力学研究[J]. 计算机科学, 2017, 44(6): 400-404.
|
|
ZHANGX P, YUANL Y. Oscillatory behaviors of malware propagation model in wireless sensor networks with time delays and reaction-diffusion terms[J]. Computer Science, 2017, 44(6): 400-404. (in Chinese)
|
15 |
王昕炜, 彭海军, 钟万勰. 具有潜伏期时滞的时变SEIR模型的最优疫苗接种策略[J]. 应用数学和力学, 2019, 40(7): 701-712.
|
|
WANGX W, PENGH J, ZHONGW X. Optimal vaccination strategies for a time-varying SEIR epidemic model with latent delay[J]. Applied Mathematics and Mechanics, 2019, 40(7): 701-712. (in Chinese)
|
16 |
SONGH T, LIUS Q, JIANGW H. Global dynamics of a multistage SIR model with distributed delays and nonlinear incidence rate[J]. Mathematical Methods in the Applied Sciences, 2017, 40(6): 2153-2164.
|
17 |
ZHU LINH, GUANG, LIY M. Nonlinear dynamical analysis and control strategies of a network-based SIS epidemic model with time delay[J]. Applied Mathematical Modelling, 2019, 70: 512-531.
|
18 |
关治洪, 亓玉娟, 姜晓伟, 等. 基于复杂网络的病毒传播模型及其稳定性[J]. 华中科技大学学报(自然科学版), 2011, 39(1): 114-119.
|
|
GUANZ H, QIY J, JIANGX W, et al. Virus propagation dynamic model and stability on complex networks[J]. Journal of Huazhong University of science and Technology(Natural Science Edition), 2011, 39(1): 114-119. (in Chinese)
|
19 |
王刚, 陆世伟, 胡鑫, 等. “去二存一”混合机制下的病毒扩散模型及稳定性分析[J]. 电子与信息学报, 2019, 41(3): 709-716.
|
|
WANGG, LUS W, HUX, et al. Virus propagation model and stability under the hybrid mechanism of “two-go and one-live”[J]. Journal of Electronics & Information Technology, 2019, 41(3): 709-716. (in Chinese)
|
20 |
王刚, 陆世伟, 胡鑫, 等. 潜伏机制下网络病毒传播SEIQRS模型及稳定性分析[J]. 哈尔滨工业大学学报, 2019, 51(5): 131-137.
|
|
WANGG, LUS W, HUX, et al. Network virus spreading SEIQRS model and its stability under escape mechanism[J]. Journal of Harbin Institute of Technology, 2019, 51(5): 131-137. (in Chinese)
|
21 |
LIC, LIAOX F. The impact of hybrid quarantine strategies and delay factor on viral prevalence in computer networks[J]. Mathematical Modelling of Natural Phenomena, 2016, 11(4): 105-119.
|
22 |
OMATAK. Nonequilibrium statistical mechanics of a susceptible-infected-recovered epidemic model[J]. Physical Review E, 2017, 96(2): 022404(1-5.
|
23 |
王克, 范猛. 泛函微分方程的相空间理论及应用[M]. 北京: 科学出版社, 2009: 237.
|
24 |
YUANY, BÉLAIRJ. Stability and hopf bifurcation analysis for functional differential equation with distributed delay[J]. SIAM Journal on Applied Dynamical Systems, 2011, 10(2): 551-581.
|
25 |
张子振, 储煜桂, KUMARIS, 等. 一类具有非线性发生率的无线传感网络蠕虫传播模型的延迟动力学行为[J]. 浙江大学学报(理学版), 2019, 46(2): 168-186.
|
|
ZHANGZ Z, CHUY G, KUMARIS, et al. Delay dynamics of worm propagation model with non-linear incidence rates in wireless sensor network. Journal of Zhejiang University(Science Edition), 2019, 46(2): 168-186. (in Chinese)
|
26 |
LESKOVECJ, KLEINBERGJ, FALOUTSOSC. SNAP Datasets: Stanford Large Network Dataset Collection [OL]. (2007)[2021-12-10]. .
|
27 |
WANGF W, HUANGW Y, SHENY L, et al. Analysis of SVEIR worm attack model with saturated incidence and partial immunization[J]. Journal of Communications and Information Networks, 2016, 1(4): 105-115.
|