电子学报 ›› 2022, Vol. 50 ›› Issue (11): 2668-2677.DOI: 10.12263/DZXB.20211136
刘庆1, 刘宝亮2, 张德伟1, 李建兵1, 魏进进1, 刘起坤1
收稿日期:
2021-08-23
修回日期:
2022-01-08
出版日期:
2022-11-25
作者简介:
LIU Qing1, LIU Bao-liang2, ZHANG De-wei1, LI Jian-bing1, WEI Jin-jin1, LIU Qi-kun1
Received:
2021-08-23
Revised:
2022-01-08
Online:
2022-11-25
Published:
2022-11-19
摘要:
针对微波滤波器小型化、高性能的应用需求,首先分析了单腔双模和双腔单模谐振器组合型滤波器等效耦合拓扑的特性,然后提出了三种双层单腔双模和双腔单模基片集成波导谐振器组合的带通滤波器结构,它们等效为盒型耦合拓扑,但具有不同的对角交叉耦合路径.两个单模谐振器位于上层介质板,并分别与输入输出馈线相连;双模谐振器位于下层介质板,并通过中间金属层上的槽线与单模谐振器耦合.详细分析了旁路耦合、磁耦合和频变耦合提供对角耦合路径时,滤波器特性及传输零点位置的可控性.最后设计了两个中心频率为7.5GHz、带宽为240MHz的带通滤波器,并进行加工和测试.测试和仿真结果一致性较好,验证了双层单腔双模和双腔单模基片集成波导滤波器结构的可行性.
中图分类号:
刘庆, 刘宝亮, 张德伟, 等. 小型化双层基片集成波导盒型耦合拓扑滤波器设计[J]. 电子学报, 2022, 50(11): 2668-2677.
Qing LIU, Bao-liang LIU, De-wei ZHANG, et al. Design of Miniaturized Dual-Layer Substrate Integrated Waveguide Bandpass Filters in Box-Like Coupling Scheme[J]. Acta Electronica Sinica, 2022, 50(11): 2668-2677.
滤波器 | 中心频率 (GHz) | 阶数 | 相对带宽 (%) | 位置可控的 FTZs数量 | 是否可控 频率响应 | 归一化尺寸 λg×λg | 介质板 层数 | 结构 实现形式 |
---|---|---|---|---|---|---|---|---|
文献[ | 10 | 5 | 3.94 | 2 | 是 | 1.52×1.61 | 1 | 单层单双模组合 |
文献[ | 5.8 | 4 | 12.1 | 0 | 否 | 1.29×1.29 | 1 | 单层单模 |
文献[ | 20.5 | 4 | 3.9 | 0 | 否 | 1.47× 1.91 | 1 | 单层单模 |
文献[ | 5.22 | 4 | / | 1 | 否 | 1.46×0.66 | 1 | 单层双模 |
文献[ | 15 | 4 | 4.3 | 2 | 是 | 1.73×0.95 | 1 | 单层双模 |
文献[ | 10 | 4 | 3.28 | 2 | 是 | 0.86×0.86 | 2 | 双层双模 |
文献[ | 5.5 | 4 | 3.6 | 0 | 否 | 0.88×0.88 | 2 | 双层双模 |
文献[ | 10 | 4 | 3.31 | 2 | 是 | 1.31×1.31 | 1 | 单层单双模组合 |
文献[ | 13.53 | 3 | 3.91 | 2 | 否 | 0.84×0.84 | 2 | 单层三模 |
滤波器I | 7.47 | 4 | 2.57 | 2 | 是 | 0.85×0.85 | 2 | 双模单双模组合 |
滤波器II | 7.49 | 4 | 2.52 | 3 | 是 | 0.85×0.85 | 2 | 双模单双模组合 |
表1 与参考文献中SIW带通滤波器性能比较
滤波器 | 中心频率 (GHz) | 阶数 | 相对带宽 (%) | 位置可控的 FTZs数量 | 是否可控 频率响应 | 归一化尺寸 λg×λg | 介质板 层数 | 结构 实现形式 |
---|---|---|---|---|---|---|---|---|
文献[ | 10 | 5 | 3.94 | 2 | 是 | 1.52×1.61 | 1 | 单层单双模组合 |
文献[ | 5.8 | 4 | 12.1 | 0 | 否 | 1.29×1.29 | 1 | 单层单模 |
文献[ | 20.5 | 4 | 3.9 | 0 | 否 | 1.47× 1.91 | 1 | 单层单模 |
文献[ | 5.22 | 4 | / | 1 | 否 | 1.46×0.66 | 1 | 单层双模 |
文献[ | 15 | 4 | 4.3 | 2 | 是 | 1.73×0.95 | 1 | 单层双模 |
文献[ | 10 | 4 | 3.28 | 2 | 是 | 0.86×0.86 | 2 | 双层双模 |
文献[ | 5.5 | 4 | 3.6 | 0 | 否 | 0.88×0.88 | 2 | 双层双模 |
文献[ | 10 | 4 | 3.31 | 2 | 是 | 1.31×1.31 | 1 | 单层单双模组合 |
文献[ | 13.53 | 3 | 3.91 | 2 | 否 | 0.84×0.84 | 2 | 单层三模 |
滤波器I | 7.47 | 4 | 2.57 | 2 | 是 | 0.85×0.85 | 2 | 双模单双模组合 |
滤波器II | 7.49 | 4 | 2.52 | 3 | 是 | 0.85×0.85 | 2 | 双模单双模组合 |
1 | 葛俊祥,李浩,杨现志,等. Ka波段基片集成波导窄带带通滤波器设计[J]. 电子与信息学报, 2017, 39(5): 1245-1249. |
GE J X, LI H, YANG X Z, et al. Design of a Ka-band filter with narrow pass band based on substrate integrated waveguide [J]. Journal of Electronics & Information Technology, 2017, 39(5): 1245-1249. (in Chinese) | |
2 | 杨君豪,孙曼,张金玲. 基于SIW技术的毫米波滤波器研究与设计[J]. 电波科学学报, 2019, 34(4): 518-523. |
YANG J H, SUN M, ZHANG J L. Research and design of millimeter-wave filter based on SIW technology[J]. Chinese Journal of Radio Science, 2019,34(4):518-523. (in Chinese) | |
3 | 刘庆,周东方,张德伟,等. 双/三模基片集成波导和共面波导混合结构滤波器设计[J]. 电子学报, 2018, 46(4): 952-960. |
LIU Q, ZHOU D F, ZHANG D W, et al. Design of filters using the hybrid structure of dual/triple-mode substrate integrated waveguide and ground coplanar waveguides[J]. Acta Electronica Sinica, 2018, 46(4): 952-960. (in Chinese) | |
4 | MOSCATO S, TOMASSONI C, BOZZI M, PERREGRINI L. Quarter-mode cavity filters in substrate integrated waveguide technology[J]. IEEE Transactions on Microwave Theory & Techniques, 2016, 64(8): 1-10. |
5 | JONES T R, DANESHMAND M. Miniaturized folded ridged half-mode and quarter-mode substrate integrated waveguides for filter design[J]. IEEE Transactions on Microwave Theory & Techniques, 2019, 67(8): 3414-3426. |
6 | LIU Q, ZHANG D, TANG M, DENG H, ZHOU D. A class of box-like bandpass filters with wide stopband based on new dual-mode rectangular SIW cavities[J]. IEEE Transactions on Microwave Theory & Techniques, 2021, 69(1): 101-110. |
7 | LI P, CHU H, CHEN R. Design of compact bandpass filters using quartermode and eighth-mode SIW cavities[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2017, 7(6): 956-963. |
8 | YOU C J, CHEN Z N, ZHU X W, GONG K. Single-layered SIW post-loaded electric coupling-enhanced structure and its filter applications[J]. IEEE Transactions on Microwave Theory & Techniques, 2013, 61(1): 125-130. |
9 | CHEN X P, WU K. Substrate integrated waveguide cross-coupled filter with negative coupling structure[J]. IEEE Transactions on Microwave Theory & Techniques, 2008, 56(1): 142-149. |
10 | ZHU F, HONG W, CHEN J X, WU K. Cross-coupled substrate integrated waveguide filters with improved stopband performance[J]. IEEE Microwave & Wireless Components Letters, 2012, 22(12): 633-635. |
11 | GONG K, HONG W, et al. Substrate integrated waveguide quasi-elliptic filters with controllable electric and magnetic mixed coupling[J]. IEEE Transactions on Microwave Theory & Techniques, 2012, 60(10): 3071-3078. |
12 | ZYDLOWSKI S, LESZCZYNSKA L, MROZOWSKI M AND. A linear phase filter in quadruplet topology with frequency-dependent couplings[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(1): 32-34. |
13 | CHU P, HONG W, et al. In-line ports dual-mode substrate integrated waveguide filter with flexible responses[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(10): 882-884 |
14 | LIU Q, ZHOU D, WANG S, ZHANG Y. Highly-selective pseudoelliptic filters based on dual-mode substrate integrated waveguide resonators[J]. Electronics Letters, 2016, 52(14): 1233-1235. |
15 | CHU P, HONG W; TUO MG, ZHENG KL, YANG WW, XU F, WU K. Dual-mode substrate integrated waveguide filter with flexible response[J]. IEEE Transactions on Microwave Theory & Techniques, 2017, 63(3): 1-7. |
16 | LIU Q, ZHOU D, LV D, ZHANG D, ZHANG J, et al. Multi-layered dual-mode substrate integrated waveguide bandpass filter with input and output ports located on the same substrate layer[J]. IET Microwaves Antennas & Propagation, 2019, 13(8): 1-8. |
17 | LEE T, LIN W, WU K. Multilayer SIW dual-mode bandpass filter with higher-order mode attenuation[C]//International Wireless Symposium(IWS). Chengdu: IEEE, 2018. |
18 | LIU X X, YU X, CHENG F, et al. Double-layer dual-mode SIW filter using via perturbation[C]//International Workshop on Electromagnetics: Applications and Student Innovation Competition, Chengdu: IEEE, 2012: 1-4. |
19 | 刘庆,周东方,吕大龙,等. 基于非谐振节点的盒型拓扑结构基片集成波导滤波器设计[J]. 电子学报, 2019, 47(5): 1136-1145. |
LIU Q, ZHOU D F, LÜ D L, et al. Design of substrate integrated waveguide filters in box-like topology with nonresonating node[J]. Acta Electronica Sinica, 2019, 47(5): 1136-1145. (in Chinese) | |
20 | LI M, JI Q, CHEN C, et al. A triple-mode bandpass filter with controllable bandwidth using QMSIW cavity[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(8): 654-656. |
21 | JIN C, SHEN Z. Compact triple-mode filter based on quarter-mode substrate integrated waveguide [J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(1): 37-45. |
22 | LIU Q, ZHOU D, SHI J, HU T. High-selective triple-mode SIW bandpass filter using higher-order resonant modes[J]. Electronics Letters, 2020, 56(1): 37-39. |
23 | XIE H, ZHOU K, ZHOU C, WU W. Substrate-integrated waveguide triple-band bandpass filters using triple-mode cavities[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(6): 2967-2977. |
24 | XIE H, ZHOU K, ZHOU C, WU W. Stopband-improved SIW triplexer and triple-band filters using alternately cascaded triple- and single-mode cavities[J]. IEEE Access, 2019, 7: 56745-56752. |
25 | LIU Z, XIAO G, ZHU L. Triple-mode bandpass filters on CSRR-loaded substrate integrated waveguide cavities[J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 2016, 6(7): 1-7. |
26 | SHEN W. Extended-doublet half-mode substrate integrated waveguide bandpass filter with wide stopband[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(4): 305-307. |
27 | CAMERON R J, KUDSIA C M, MANSOUR R R. Microwave Filters for Communication Systems: Fundamentals, Design, and Applications[M]. New York, USA: Wiley, 2007. |
28 | CHANG K. Microstrip Filters for RF/Microwave Applications[M]. New York, USA: John Wiley & Sons, Inc, 2001. |
29 | POZAR D M. Microwave Engineering[M]. 3rd Ed. New York, USA: Wiley, 2015. |
30 | CAMERON R J, HARISH A R, RADCLIFFE C J. Synthesis of advanced microwave filters without diagonal cross-couplings[J]. IEEE Transactions on Microwave Theory & Techniques, 2003, 50(12): 2862-2872. |
[1] | 连继伟, 班永灵, 顾鹏飞, 丁大志. 基于共腔罗特曼透镜的毫米波十字扫描多波束阵列天线[J]. 电子学报, 2022, 50(12): 2996-3002. |
[2] | 石光明, 马震远, 麦智荣, 林智勇. 作弊防控系统中独立可调双频带通滤波器设计[J]. 电子学报, 2020, 48(8): 1641-1646. |
[3] | 刘庆, 周东方, 吕大龙, 沈威宇, 张德伟, 张毅. 基于非谐振节点的盒型拓扑结构基片集成波导滤波器设计[J]. 电子学报, 2019, 47(5): 1136-1145. |
[4] | 王旭光, 杨维明, 尤旭颖, 彭菊红, 曾张帆. 基于枝节加载谐振器的新型三频带通滤波器设计[J]. 电子学报, 2019, 47(4): 970-976. |
[5] | 刘庆, 周东方, 张德伟, 王树兴, 吕大龙, 张毅. 双/三模基片集成波导和共面波导混合结构滤波器设计[J]. 电子学报, 2018, 46(4): 952-960. |
[6] | 王树兴, 吴瑛, 周东方, 张德伟, 张毅. 基于微带贴片谐振器的高选择性双模双通带带通滤波器的研究[J]. 电子学报, 2018, 46(3): 595-601. |
[7] | 张德伟, 王树兴, 刘庆, 周东方, 张毅, 吕大龙, 吴瑛. 基于奇偶模分析法的四模谐振器结构的双通带带通滤波器设计[J]. 电子学报, 2018, 46(2): 387-392. |
[8] | 刘庆, 张德伟, 王树兴, 周东方, 吕大龙, 张毅. 双模方形谐振腔增益均衡器的设计与实现[J]. 电子学报, 2017, 45(9): 2162-2169. |
[9] | 曹良足, 殷丽霞. 压电换能器电调介质滤波器的设计与实现[J]. 电子学报, 2017, 45(8): 1964-1969. |
[10] | 王树兴, 张德伟, 吴瑛, 刘庆, 周东方, 张毅. 基于不同边界条件的SIW谐振腔导模场分析及应用[J]. 电子学报, 2017, 45(10): 2540-2548. |
[11] | 王树兴, 周东方, 张德伟, 吕大龙. 半模基片集成波导增益均衡器的设计和实现[J]. 电子学报, 2016, 44(12): 2868-2876. |
[12] | 徐翔宇, 李海龙. 基于复调制细化谱分析的轧辊偏心谐波参数估计[J]. 电子学报, 2016, 44(10): 2398-2402. |
[13] | 赵志远, 杨霖, 陈昆和, 周强, 陈剑斌. 基于混合梳状线谐振器的三阶恒定带宽电调微带滤波器研究[J]. 电子学报, 2015, 43(1): 140-144. |
[14] | 刘冰, 刘伟, 徐暑晨, 汤红军, 洪伟. 新型半模基片集成波导镜像转接段的研究[J]. 电子学报, 2012, 40(6): 1246-1250. |
[15] | 周春霞;夏侯海;季鲁;何明;方兰;阎少林. 双模方形带通滤波器的分析、建模及设计[J]. 电子学报, 2011, 39(6): 1364-1367. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||