1 |
BENDALEA, BOULTT E. Towards open set deep networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1563-1572.
|
2 |
BENDALEA, BOULTT. Towards open world recognition[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1893-1902.
|
3 |
KRIZHEVSKYA, SUTSKEVERI, HINTONG E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
4 |
O'SHEAT J, ROYT, CLANCYT C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168-179.
|
5 |
HEK M, ZHANGX Y, RENS Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
6 |
PENGS L, JIANGH Y, WANGH X, et al. Modulation classification based on signal constellation diagrams and deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 718-727.
|
7 |
DUANS R, CHENK, YUX, et al. Automatic multicarrier waveform classification via PCA and convolutional neural networks[J]. IEEE Access, 2018, 6: 51365-51373.
|
8 |
WONGL J, HEADLEYW C, MICHAELSA J. Specific emitter identification using convolutional neural network-based IQ imbalance estimators[J]. IEEE Access, 2019, 7: 33544-33555.
|
9 |
HUANGS, CHAIL, LIZ N, et al. Automatic modulation classification using compressive convolutional neural network[J]. IEEE Access, 2019, 7: 79636-79643.
|
10 |
ZHANGX W, SEYFIT, JUS T, et al. Deep learning for interference identification: Band, training SNR, and sample selection[C]//2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications. Cannes: IEEE, 2019: 1-5.
|
11 |
LIANGF, SHENC, YUW, et al. Towards optimal power control via ensembling deep neural networks[J]. IEEE Transactions on Communications, 2020, 68(3): 1760-1776.
|
12 |
CEVIKALPH, TRIGGSB, FRANCV. Face and landmark detection by using cascade of classifiers[C]//2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Shanghai: IEEE, 2013: 1-7.
|
13 |
CEVIKALPH. Best fitting hyperplanes for classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1076-1088.
|
14 |
DHAMIJAA R, GÜNTHERM, BOULTT E. Reducing Network Agnostophobia[EB/OL]. (2018)[2021]. .
|
15 |
SHUL, XUH, LIUB. DOC: Deep Open Classification of Text Documents[EB/OL]. (2017)[2021]. .
|
16 |
LIUZ W, MIAOZ Q, ZHANX H, et al. Large-scale long-tailed recognition in an open world[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach: IEEE, 2019: 2532-2541.
|
17 |
HASSENM, CHANP K. Learning a neural-network-based representation for open set recognition[C]//Proceedings of the 2020 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2020: 154-162.
|
18 |
GEZ Y, DEMYANOVS, GARNAVIR. Generative OpenMax for multi-class open set classification[C]//Proceedings of the British Machine Vision Conference 2017. London: British Machine Vision Association, 2017: 42.1-42.12.
|
19 |
YUY, QUW Y, LIN, et al. Open category classification by adversarial sample generation[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017: 469.
|
20 |
CHENG Y, PENGP X, WANGX Q, et al. Adversarial reciprocal points learning for open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, DOI:10.1109/TPAMI.2021.3106743.
|
21 |
DE MAESSCHALCKR, JOUAN-RIMBAUDD, MASSARTD L. The mahalanobis distance[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50(1): 1-18.
|
22 |
WANGX, HANX T, HUANGW L, et al. Multi-similarity loss with general pair weighting for deep metric learning[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach: IEEE, 2019: 5017-5025.
|
23 |
WENY D, ZHANGK P, LIZ F, et al. A discriminative feature learning approach for deep face recognition[C]//European Conference On Computer Vision. Cham: Springer, 2016: 499-515..
|
24 |
MENSINKT, VERBEEKJ, PERRONNINF, et al. Distance-based image classification: Generalizing to new classes at near-zero cost[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2624-2637.
|