电子学报 ›› 2022, Vol. 50 ›› Issue (6): 1310-1318.DOI: 10.12263/DZXB.20210829

所属专题: 电磁频谱智能+

• 电磁频谱智能+ • 上一篇    下一篇

Open-MUSIC:基于度量学习与特征子空间投影的电磁目标开集识别算法

杨柳, 利强, 邵怀宗   

  1. 电子科技大学信息与通信工程学院,四川 成都 611731
  • 收稿日期:2021-07-01 修回日期:2022-01-02 出版日期:2022-06-25
    • 通讯作者:
    • 利强
    • 作者简介:
    • 杨 柳 男,1999年出生,安徽芜湖人.2020年在电子科技大学获得学士学位,现为硕博连读生.主要研究方向为知识引导的机器学习.E-mail: 1070032777@qq.com
      利 强(通讯作者) 男,1982年出生,四川成都人.副教授、博士生导师.分别于2005年、2008年在电子科技大学获得学士和硕士学位,于2012年在香港中文大学获得博士学位.主要研究方向为无线通信优化算法、电磁频谱智能感知等. E-mail:lq@uestc.edu.cn
      邵怀宗 男,1967年出生,四川巴中人.教授、博士生导师.1992年在长春理工大学获得学士学位,1998年在四川大学获得硕士学位,2003年在电子科技大学获得博士学位.主要研究方向为无线通信、电子对抗、新体制通信、人工智能等.E-mail: hzshao@uestc.edu.cn
    • 基金资助:
    • 国家自然科学基金 (62171110)

Open-MUSIC: An Open Set Recognition Algorithm of Electromagnetic Target Based on Metric Learning and Feature Subspace Projection

YANG Liu, LI Qiang, SHAO Huai-zong   

  1. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
  • Received:2021-07-01 Revised:2022-01-02 Online:2022-06-25 Published:2022-06-25
    • Corresponding author:
    • LI Qiang
    • Supported by:
    • National Natural Science Foundation of China (62171110)

摘要:

在越来越复杂的电磁频谱环境中,要想实现对频谱资源的管控,首先要判断发送信号的辐射源是否是己方已知的.针对此问题,本文提出了一种基于计算特征子空间投影比值的算法Open-MUSIC(MUltiple SIgnal Classification),通过神经网络获得已知类特征表示;进而得到已知类特征矩阵的两个正交子空间;以特征在两个子空间内的投影比值为指标,对辐射源信号样本是否为已知做判决.在3个数据集上的仿真表明,Open-MUSIC算法的性能在电磁数据集上较其他方法提升了3%以上.

关键词: 开集识别, 特征子空间分解, 中心损失, 投影

Abstract:

In the increasingly complex electromagnetic spectrum environment, in order to realize the management and control of spectrum resources, it is necessary to determine whether the received signal is from the known or unknown radiation source. To tackle this problem, this paper proposes an algorithm named Open-MUSIC(MUltiple SIgnal Classification) to discriminate the known and unknown sources. The key idea of Open-MUSIC is to form the feature space from the known classes via a judiciously designed neural network, and then the feature space is decomposed into two orthogonal subspaces, namely the range subspace and the null subspace. Based on the projection ratio of the test signal's feature onto the two subspaces, we can accurately discriminate the known and the unknown radiation sources. Experiments on three datasets show that the performance of the Open-MUSIC is improved by more than 3% on electromagnetic data sets compared to other methods.

Key words: open set recognition, feature subspace decomposition, center loss, projection

中图分类号: