1 |
WANGJ, SHENH T, SONGJ, et al. Hashing for similarity search: A survey[EB/OL]. (2014-08-13)[2022-02-12]..
|
2 |
李志欣, 凌锋, 张灿龙, 等. 融合两级相似度的跨媒体图像文本检索[J]. 电子学报, 2021, 49(2): 268-274.
|
|
LIZ X, LINGF, ZHANGC L, et al. Cross-media image-text retrieval with two level similarity[J]. Acta Electronica Sinica, 2021, 49(2): 268-274. (in Chinese)
|
3 |
李武军, 周志华. 大数据哈希学习: 现状与趋势[J]. 科学通报, 2015, 60(5): 485-490.
|
|
LIW J, ZHOUZ H. Learning to hash for big data: Current status and future trends[J]. Chinese Science Bulletin, 2015, 60(5): 485-490. (in Chinese)
|
4 |
高文. “存得下,查得快”拥抱多媒体大数据时代[J]. 创新科技, 2013, 25(6): 7.
|
|
GAOW. "Save it, check it quickly" Embrace the era of multimedia big data[J]. Innovation Science and Technology, 2013, 25(6): 7. (in Chinese)
|
5 |
刘昊淼, 王瑞平, 山世光, 等. 基于离散优化的哈希编码学习方法[J]. 计算机学报, 2019, 42(5): 1149-1160.
|
|
LIUH M, WANGR P, SHANS G, et al. Learning to hash with discrete optimization[J]. Chinese Journal of Computers, 2019, 42(5): 1149-1160. (in Chinese)
|
6 |
GONGY, LAZEBNIKS, GORDOA, et al. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(12): 2916-2929.
|
7 |
KULISB, GRAUMANK. Kernelized locality-sensitive hashing for scalable image search[C]//Proceedings of 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 2130-2137.
|
8 |
JIR, LIUH, CAOL, et al. Toward optimal manifold hashing via discrete locally linear embedding[J]. IEEE Transactions on Image Processing, 2017, 26(11): 5411-5420.
|
9 |
KOUTAKIG, SHIRAIK, AMBAIM. Hadamard coding for supervised discrete hashing[J]. IEEE Transactions on Image Processing, 2018, 27(11): 5378-5392.
|
10 |
JINL, LIZ, PANY, et al. Weakly-supervised image hashing through masked visual-semantic graph-based reasoning[C]//Proceedings of the 28th ACM International Conference on Multimedia. Seattle: ACM, 2020: 916-924.
|
11 |
LIZ, TANGJ, ZHANGL, et al. Weakly-supervised semantic guided hashing for social image retrieval[J]. International Journal of Computer Vision, 2020, 128:2265-2278.
|
12 |
姚涛, 孔祥维, 付海燕, 等. 基于映射字典学习的跨模态哈希检索[J]. 自动化学报, 2018, 44(8): 1475-1485.
|
|
YAOT, KONGX W, FUH Y, et al. Projective dictionary learning hashing for cross-modal retrieval[J]. Acta Automatica Sinica, 2018, 44(8): 1475-1485.
|
13 |
WANGD, GAOX, WANGX, et al. Label consistent matrix factorization hashing for large-scale cross-modal similarity search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(10): 2466-2479.
|
14 |
WANGD, WANGQ, GAOX. Robust and flexible discrete hashing for cross-modal similarity search[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 28(10): 2703-2715.
|
15 |
刘昊鑫, 吴小俊, 庾骏. 联合哈希特征和分类器学习的跨模态检索算法[J]. 模式识别与人工智能, 2020, 33(2): 160-165.
|
|
LIUH X, WUX J, YUJ. Joint hashing feature and classifier learning for cross-modal retrieval[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(2): 160-165. (in Chinese)
|
16 |
LIUH, JIR, WUY, et al. Supervised matrix factorization for cross-modality hashing[C]//Proceedings of International Joint Conference on Artificial Intelligence. New York: IJCAI, 2016: 1767-1773.
|
17 |
LINZ, DINGG, HUM, et al. Semantics-preserving hashing for cross-view retrieval[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3864-3872.
|
18 |
王锦荟, 金露, 李泽超, 等. 基于知识蒸馏的跨模态哈希[J/OL]. (2021-11-04)[2022-02-12]. .
|
|
WANGJ Y, JINL, LIZ C, et al. Cross-Modal Knowledge Distillation Hashing[J/OL]. (2021-11-04)[2022-02-12]. .1444.008.html. (in Chinese)
|
19 |
LIZ, TANGJ, MEIT. Deep collaborative embedding for social image understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(9): 2070-2083.
|
20 |
SONGJ, YANGY, HUANGZ, et al. Effective multiple feature hashing for large scale near duplicate video retrieval[J]. IEEE Transaction on Multimedia, 2013, 15(8): 1997-2008.
|
21 |
LIUX, HEJ, LIUD, et al. Compact kernel hashing with multiple features[C]//Proceedings of the ACM International Conference on Multimedia. Seattle: ACM, 2012: 881-884.
|
22 |
SHENX, SHENF, SUNQ, et al. Multi-view latent hashing for efficient multimedia search[C]//Proceedings of the ACM International Conference on Multimedia, Seattle: ACM, 2015: 831-834.
|
23 |
SHENX, SHENF, LIUL, et al. Multiview discrete hashing for scalable multimedia search[J]. ACM Transactions on Intelligent Systems and Technology, 2018, 9(5): 53-73.
|
24 |
LUX, ZHUL, CHENGZ, et al. Online multi-modal hashing with dynamic query-adaption[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris: ACM, 2019: 715-724.
|
25 |
SYLVESTERJ J. LX. Thoughts on inverse orthogonal matrices, simultaneous signsuccessions, and tessellated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1867, 34(232): 461-475.
|
26 |
GIONISA, INDYKP, MOTWANIR. Similarity search in high dimensions via hashing[C]// Proceedings of the International Conference on Very Large Date Bases. Sydney: IEEE, 1999: 518-529.
|
27 |
LINM, JIR, LIUH, et al. Hadamard matrix guided online hashing[J]. International Journal of Computer Vision, 2020, 128(6): 2279-2306.
|
28 |
XIANGS, NIEF, MENGG, et al. Discriminative least squares regression for multiclass classification and feature selection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(11): 1738-1754.
|
29 |
RASIWASIAN, COSTAP J, COVIELLOE, et al. A new approach to cross-modal multimedia retrieval[C]//Proceedings of the 18th ACM International Conference on Multimedia, Seattle: ACM, 2010: 251-260.
|
30 |
BLEID M, NGA Y, JORDANM I, et al. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(2): 993-1022.
|
31 |
RASHTCHIANC, YOUNGP, HODOSHM, et al. Collecting image annotations using amazon's mechanical turk[C]//Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon's Mechanical Turk. Los Angeles: ACM, 2010: 139-147.
|
32 |
WEIY, ZHAOY, LUC, et al. Cross-modal retrieval with CNN visual features: A new baseline[J]. IEEE Transactions on Cybernetics, 2016, 47(2): 449-460.
|
33 |
KANGY, KIMS, CHOIS. Deep learning to hash with multiple representations[C]//Proceedings of the 12th IEEE Conference on Data Mining. Brussels: IEEE, 2012: 930-935.
|
34 |
WANGD, CUIP, OU M, et al. Deep multimodal hashing with orthogonal regularization[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence. Buenos, Aires: IEEE, 2015: 2291-2297.
|
35 |
ZHUL, LUX, CHENGZ, et al. Deep collaborative multi-view hashing for large-scale image search[J]. IEEE Transactions on Image Processing, 2020, 29: 4643-4655.
|
36 |
LUX, LIUL, NIEL, et al. Semantic-driven Interpretable Deep Multi-modal Hashing for Large-scale Multimedia Retrieval[J]. IEEE Transactions on Multimedia, 2021, 23: 4541-4554.
|