1 |
COELHO A L V, SANDES N C. Data clustering via cooperative games: A novel approach and comparative study[J]. Information Sciences, 2021, 545: 791-812.
|
2 |
SAROJ K. Review: study on simple k mean and modified K mean clustering technique[J]. International Journal of Computer Science Engineering and Technology, 2016, 6(7): 279-281.
|
3 |
XIAO Y Y, HUANG C H, HUANG J Y, et al. Optimal mathematical programming and variable neighborhood search for k-modes categorical data clustering[J]. Pattern Recognition, 2019, 90: 183-195.
|
4 |
ZHANG S B, MAO X J, CHOO K K R, et al. A trajectory privacy-preserving scheme based on a dual-K mechanism for continuous location-based services[J]. Information Sciences, 2020, 527: 406-419.
|
5 |
ZHANG S B, WANG G J, BHUIYAN M Z A, et al. A dual privacy preserving scheme in continuous location-based services[J]. IEEE Internet of Things Journal, 2018, 5(5): 4191-4200.
|
6 |
CHAVES A, MOURA I, BERNARDINO J, et al. The privacy paradigm: An overview of privacy in Business Analytics and Big Data[C]//2020 15th Iberian Conference on Information Systems and Technologies(CISTI). Piscataway: IEEE, 2020: 1-6.
|
7 |
DWORK C, ROTH A. The algorithmic foundations of differential privacy[J]. Foundations and Trends in Theoretical Computer Science, 2013, 9(3/4): 211-407.
|
8 |
DEWRI R, THURIMELLA R. Exploiting service similarity for privacy in location-based search queries[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(2): 374-383.
|
9 |
MEDKOVÁ J. Composition attack against social network data[J]. Computers & Security, 2018, 74: 115-129.
|
10 |
彭慧丽, 金凯忠, 付聪聪, 等. 基于序列格的隐私时序模式挖掘方法[J]. 电子学报, 2020, 48(1): 153-163.
|
|
PENG H L, JIN K Z, FU C C, et al. Private time series pattern mining with sequential lattice[J]. Acta Electronica Sinica, 2020, 48(1): 153-163. (in Chinese)
|
11 |
陈思, 付安民, 柯海峰, 等. MCDP: 基于神经网络的多集群分布式差分隐私数据发布方法[J]. 电子学报, 2020, 48(12): 2297-2303.
|
|
CHEN S, FU A M, KE H F, et al. MCDP: multi-cluster differential privacy data publishing method based on neural network[J]. Acta Electronica Sinica, 2020, 48(12): 2297-2303. (in Chinese)
|
12 |
郑孝遥, 罗永龙, 汪祥舜, 等. 基于位置服务的分布式差分隐私推荐方法研究[J]. 电子学报, 2021, 49(1): 99-110.
|
|
ZHENG X Y, LUO Y L, WANG X S, et al. Research on location-based distributed differential privacy recommendation method[J]. Acta Electronica Sinica, 2021, 49(1): 99-110. (in Chinese)
|
13 |
XIAO X K, TAO Y F, CHEN M H. Optimal random perturbation at multiple privacy levels[J]. Proceedings of the VLDB Endowment, 2009, 2(1): 814-825.
|
14 |
KIFER D. On estimating the swapping rate for categorical data[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2015: 557-566.
|
15 |
SU D, CAO J N, LI N H, et al. Differentially private K-means clustering and a hybrid approach to private optimization[J]. ACM Transactions on Privacy and Security, 2017, 20(4): 1-33.
|
16 |
NGUYEN T D, GUPTA S, RANA S T, et al. Privacy Aware K-Means Clustering with High Utility[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer, 2016: 388-400.
|
17 |
NGUYEN H H. Privacy-preserving mechanisms for k-modes clustering[J]. Computers & Security, 2018, 78: 60-75.
|
18 |
叶青青, 孟小峰, 朱敏杰, 等. 本地化差分隐私研究综述[J]. 软件学报, 2018, 29(7): 1981-2005.
|
|
YE Q Q, MENG X F, ZHU M J, et al. Survey on local differential privacy[J]. Journal of Software, 2018, 29(7): 1981-2005. (in Chinese)
|
19 |
ERLINGSSON Ú, PIHUR V, KOROLOVA A. RAPPOR: randomized aggregatable privacy-preserving ordinal response[C]//Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM, 2014: 1054-1067.
|
20 |
KAIROUZ P, BONAWITZ K, RAMAGE D. Discrete distribution estimation under local privacy[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York, USA: ACM, 2016: 2436-2444.
|
21 |
QIN Z, YANG Y, YU T, et al. Heavy hitter estimation over set-valued data with local differential privacy[C]//CCS'16: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM, 2016: 192-203.
|
22 |
WANG T H, LI N H, JHA S. Locally differentially private frequent itemset mining[C]//2018 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2018: 127-143.
|
23 |
DUCHI J C, JORDAN M I, WAINWRIGHT M J. Local privacy and statistical minimax rates[C]//2013 IEEE 54th Annual Symposium on Foundations of Computer Science. Piscataway: IEEE, 2013: 429-438.
|
24 |
WANG N, XIAO X K, YANG Y, et al. Collecting and analyzing multidimensional data with local differential privacy[C]//2019 IEEE 35th International Conference on Data Engineering. Piscataway: IEEE, 2019 : 638-649.
|
25 |
KULKARNI T. Answering range queries under local differential privacy[C]//Proceedings of the 2019 International Conference on Management of Data. New York, USA: ACM, 2019: 1832-1834.
|
26 |
REN X B, YU C M, YU W R, et al. LoPub: High-dimensional crowdsourced data publication with local differential privacy[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(9): 2151-2166.
|
27 |
AMIR A, AMIT M, LANDAU G M, et al. Period recovery of strings over the Hamming and edit distances[J]. Theoretical Computer Science, 2018, 710: 2-18.
|
28 |
WANG T H, BLOCKI J, LI N H, et al. Locally differentially private protocols for frequency estimation[C]//Proceedings of the 26th USENIX Conference on Security Symposium. Berkeley, CA,USA: USENIX Association, 2017: 729-745.
|