1 |
顾聪, 陈远晟, 王浩, 等. 直管谐振式低频压电声能量回收系统[J]. 电子学报, 2020, 48(10): 2071-2076.
|
|
GU C, CHEN Y S, WANG H, et al. Low frequency piezoelectric acoustic energy harvest system with straight tube resonance[J]. Acta Electronica Sinica, 2020, 48(10): 2071-2076. (in Chinese)
|
2 |
LIU J D, YU D, ZHENG Z P, et al. Lead-free BiFeO3 film on glass fiber fabric: Wearable hybrid piezoelectric-triboelectric nanogenerator[J]. Ceramics International, 2021, 47(3): 3573-3579.
|
3 |
陈远晟, 黄勤斌, 赵荪翀, 等. 基于涡激振动的微型风能采集研究[J]. 电子学报, 2021, 49(6): 1237-1240.
|
|
CHEN Y S, HUANG Q B, ZHAO S C, et al. Micro-wind energy harvesting by vortex-induced vibration[J]. Acta Electronica Sinica, 2021, 49(6): 1237-1240. (in Chinese)
|
4 |
曹良足, 殷丽霞. 压电换能器电调介质滤波器的设计与实现[J]. 电子学报, 2017, 45(8): 1964-1969.
|
|
CAO L Z, YIN L X. The implementation and design of piezoelectric transducer-tuned dielectric filter[J]. Acta Electronica Sinica, 2017, 45(8): 1964-1969. (in Chinese)
|
5 |
SUN Y, LIU Y, ZHENG Y D, et al. Enhanced energy harvesting ability of ZnO/PAN hybrid piezoelectric nanogenerators[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54936-54945.
|
6 |
朱杰. 柔性压电纳米发电机的设计构建与应用研究[D]. 太原: 中北大学, 2018.
|
|
ZHU J. Design and Application of Flexible Piezoelectric Nanogenerator[D]. Taiyuan: North University of China, 2018. (in Chinese)
|
7 |
YAN S H, ZHENG Z S, LI Y L, et al. Effect of internal stresses on temperature-dependent dielectric properties of Fe-doped BZT ceramics[J]. Ceramics International, 2017, 43(15): 12605-12608.
|
8 |
白凤仙, 马慧卿, 孙建忠, 等. 悬臂梁电极长度对压电俘能电气特性的影响研究[J]. 电子学报, 2019, 47(11): 2256-2262.
|
|
BAI F X, MA H Q, SUN J Z, et al. Study of the electrode length of cantilever on electrical characteristics of piezoelectric energy harvesting[J]. Acta Electronica Sinica, 2019, 47(11): 2256-2262. (in Chinese)
|
9 |
罗翠线, 秦敏哲. 基于模态分离技术的3×n阵列式低频宽带压电振动发电机的设计研究[J]. 电子学报, 2020, 48(3): 554-560.
|
|
LUO C X, QIN M Z. A 3 × n element piezoelectric vibration generator with low frequency and wide bandwidth exploiting modes separation technique[J]. Acta Electronica Sinica, 2020, 48(3): 554-560. (in Chinese)
|
10 |
王娇, 刘少辉, 陈长青, 等. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能[J]. 物理学报, 2020, 69(21): 59-72.
|
|
WANG J, LIU S H, CHEN C Q, et al. Interface modification and energy storage properties of Barium titanate-based/polyvinylidene fluoride composite[J]. Acta Physica Sinica, 2020, 69(21): 59-72. (in Chinese)
|
11 |
江晓钰. 钙钛矿结构钛酸钡的合成与协同催化性能研究[J]. 电子技术, 2020, 49(12): 192-194.
|
|
JIANG X Y. Study on synthesis and synergistic catalytic performance of perovskite Barium titanate[J]. Electronic Technology, 2020, 49(12): 192-194. (in Chinese)
|
12 |
BOWLAND C C, MALAKOOTI M H, SODANO H A. Barium titanate film interfaces for hybrid composite energy harvesters[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 4057-4065.
|
13 |
LIU Z W, ZHAO K, XING G X, et al. One-step synthesis of unique thorn-like BaTiO3-TiO2 composite nanofibers to enhance piezo-photocatalysis performance[J]. Ceramics International, 2021, 47(5): 7278-7284.
|
14 |
PARK K I, LEE M, LIU Y, et al. Flexible nanocomposite generator made of BaTiO₃ nanoparticles and graphitic carbons[J]. Advanced Materials(Deerfield Beach, Fla.), 2012, 24(22): 2999-3004, 2937.
|
15 |
KIM K N, CHUN J, CHAE S A, et al. Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles[J]. Nano Energy, 2015, 14: 87-94.
|
16 |
罗翠线, 魏文伯. 无铅BaTiO3/GO/PDMS复合的柔性叉指式压电发电机的设计与试验[J]. 光学 精密工程, 2019, 27(9): 2002-2010.
|
|
LUO C X, WEI W B. Flexible interdigital piezoelectric vibration generator based on BaTiO3/GO/PDMS lead-free composite[J]. Optics and Precision Engineering, 2019, 27(9): 2002-2010. (in Chinese)
|
17 |
MOON I K, LEE J, RUOFF R S, et al. Reduced graphene oxide by chemical graphitization[J]. Nature Communications, 2010, 1: 73.
|
18 |
ATAUR RAHMAN M, CHUNG G S. Synthesis of PVDF-graphene nanocomposites and their properties[J]. Journal of Alloys and Compounds, 2013, 581: 724-730.
|
19 |
TIAN M, MA Q, LI X L, et al. High performance dielectric composites by latex compounding of graphene oxide-encapsulated carbon nanosphere hybrids with XNBR[J]. Journal of Materials Chemistry A, 2014, 2(29): 11144-11154.
|
20 |
DANG Z M, YUAN J K, ZHA J W, et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites[J]. Progress in Materials Science, 2012, 57(4): 660-723.
|
21 |
YAQOOB U, UDDIN A S M I, CHUNG G S. The effect of reduced graphene oxide on the dielectric and ferroelectric properties of PVDF-BaTiO3 nanocomposites[J]. RSC Advances, 2016, 6(36): 30747-30754.
|
22 |
YAQOOB U, CHUNG G S. Effect of reduced graphene oxide on the energy harvesting performance of P(VDF-TrFE)-BaTiO3 nanocomposite devices[J]. Smart Materials and Structures, 2017, 26(9): 095060. .
|