[1] Bertero M,Mol C D,Pike E R.Linear inverse problems with discrete datat I:General formulation and singular system analysis[J].Inverse Problem,1985,1(4):301-330.[2] Bertero M,Pogcio T A,Torre V.Ill posed problems in early vision[J].Proc IEEE,1988,76(8):869-889.[3] Shepp L A,Vardi Y.Maximum likelihood reconstruction for emission tomography[J].IEEE Transactions on Medical Imaging,1982,1(2):113-122.[4] Lange K.Convergence of EM image reconstruction algorithms with Gibbs smoothness[J].IEEE Transactions on Medical Imaging,1990,9(4):439-446.[5] Anderson J M,Mair B A,Rao M,Wu C H.Weighted least-squares reconstruction algorithms for positron emission tomography[J].IEEE Transactions on Medical Imaging,1997,16(2):159-165.[6] Leahy R M,Qi J Y.Statistical approaches in quantitative positron emission tomography[J].Statistics and Computing,2000,10(2):147-165.[7] Fessler J A.Penalized weighted least-squares image reconstruction for positron emission tomography[J].IEEE Transaction on Medical Imaging,1994,13(2):290-300.[8] Teng Y,Zhang T.Iterative reconstruction algorithms with α-divergence for PET imaging[J].Computerized Medical Imaging and Graphics,2011,35(4):294-301. Cichocki A,Lee H,et al.Non-negative matrix factorization with α-divergence .Pattern Recognition Letters,2008,29(9):1433-1440.[10] Ma J H,Tian L L,Huang J,et al.Low-dose computed tomography image reconstruction by α-divergence constrained total variation minimization .Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine Conference Record .Potsdam:IEEE Press,2011.439-442.[11] Nuyts J,Beque D,Dupont P,Mortelmans L.A concave prior penalizing relative differences for maximum-a-posteriori in emission tomography[J].IEEE Transactions on Nuclear Science,2002,49(1):56-60.[12] Rudin L,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D,1992,60(27):259-268.[13] Sidky E Y,Kao C,Pan X.Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J].X-Ray SciTech,2006,14(2):119-39.[14] Acar R,Vogel C R.Analysis of bounded variation penalty methods for ill-posed problems[J].Inverse Problem,1994,10(6):1217-1229.[15] Sawatzky A,et al.Accurate EM-TV algorithm in PET with low SNR .Nuclear Science Symposium Conference Record .Dresden:IEEE Press,2008.5133-5137.[16] Amari S.Differential-Geometrical Methods in Statistics[M].Berlin:Springer-Verlag,1985.580-650.[17] Chambolle A.An algorithm for total variation minimization and applications[J].Journal of Mathematical Imaging and Vision,2004,20(1-2):89-97.[18] Yu G H,Qi L Q,Dai Y H.On nonmonotone Chambolle gradient projection algorithms for total variation image restoration[J].Journal of Mathematical Imaging and Vision,2009,35(2):143-154.[19] Fessler J A.Image reconstruction toolbox .http://www.eecs.umich.edu/~fessler/code/index.html,2011-04-18.[20] 黄静,马建华,等.基于广义Gibbs先验的优质PET成像[J].电子学报,2010,38(4):899-903. Huang J,Ma J H,et al.Generalized Gibbs priors in positron emission tomography .Acta Electronica Sinica,2010,38(4):899-903.(in Chinese)[21] Patrick J,La Riciere.Penalized-likelihood sinogram smoothing for low-dose CT .Medical Physics,2005,32(6):1676-83.[22] 马建华,陈武凡,等.基于最大互信息量熵差分割的CT金属伪影消除[J].电子学报,2009,37(8):1779-1783. Ma J H,Chen W F,et al.Metal artifact reduction in CT based on maximized the difference of mutual information segmentation[J].Acta Electronica Sinica,2009,37(8):1779-1783.(in Chinese)[23] 毕一鸣,马建华,等.基于标准剂量CT图像非局部权值先验的低剂量图像恢复[J].电子学报,2010,38(5):1143-1151. Bi Y M,Ma J H,et al.Low-dose CT image restoration using a non-local weights prior from previous normal-dose scan image[J].Acta Electronica Sinica,2010,38(5):1143-1151.(in Chinese) |