[1] R Batuwita,V Palade.FSVM-CIL:Fuzzy support vector machines for class imbalance learning [J].IEEE Transactions on Fuzzy Systems,2010,18(3):558-571.[2] U Brefeld,P Geibel,et al.Support vector machines with example dependent costs.Proceedings of the European Conference on Machine Learning.Gavtat-Dubrovnik,Croatia,2003.23-34.[3] N V Chawla,N Japkowicz,et al.Editorial to the special issue on learning from imbalanced data set[J].ACM SIGKDD Explorations,2004,6(1):1-6.[4] C Elkan.The foundations of cost-sensitive learning.Proceedings of the 17th International Joint Conference on Artificial Intelligence.San Francisco,CA,USA,2001.973-978.[5] X Y Liu,Z H Zhou.The influence of class imbalance on cost-sensitive learning:An empirical study.Proceedings of the 6th IEEE International Conference on Data Mining.Hong Kong,China,2006.970-974.[6] Y F Li,J Kwok,et al.Cost-sensitive semi-supervised support vector machine.Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI'10).Atlanta,GA,2010.500-505.[7] K Morik,P Brochhausen,et al.Combining statistical learning with a knowledge-based approach:A case study in intensive care monitoring.Proceedings of 16th International Conference on Machine Learning.San Francisco,CA,USA,1999.268-277.[8] L Qiao,S Chen,et al.Sparsity preserving discriminant analysis for single training image face recognition [J].Pattern Recognition Letters,2010,31(5):422-429.[9] Y Zhang,Z H Zhou.Cost-sensitive face recognition [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(10):1758-1769.[10] Z H Zhou,X Y Liu.On multi-class cost-sensitive learning [J].Computational Intelligence,2010,26(3):232-257.[11] C Blake et al.UCI repository of machine learning databases.http://www.ics.uci.edu/~mlearn/MLRepository.html,1998-04-02.[12] M Chapman,P Callis,et al.Metrics data program.http://mdp.ivv.nasa.gov,2004.[13] K Bennett,A Demiriz.Semi-supervised support vector machines.Advances in Neural Information Processing Systems 11.MIT Press,1999.368-374.[14] M Belkin,P Niyogi,et al.Manifold regularization:A geometric framework for learning from labeled and unlabeled examples [J].Journal of Machine Learning Research,2006,7(48):2399-2434.[15] D Cai,X He,et al.Semi-supervised discriminant analysis.IEEE International Conference on Computer Vision.Rio de Janeiro,Brazil,2007.1-7.[16] O Chapelle,B Scholkopf,et al.Semi-Supervised Learning [M].Cabridge,MA:MIT Press,2006.[17] S Roweis,L Saul.Nonlinear dimensionality reduction by locally linear embedding [J].Science,2000,290:2323-2326. |