[1] J Pavelka.On fuzzy logic:I,II,III[J].Z Math Logik Grundlagen Math,1979,25:45-52;119-134;447-464. [2] E W Adams.A Prime of Probability Logic[M].Stanford:CSLI Publication,1998. [3] G Gerla.Inference in probability in probability Logic[J].Artificial Inrerlligence,1994,70(1-2):33-52. [4] D Dubois,H Prade.Possibility theory,probability theory and multiple-valued logics:A clarification[J].Ann Math Atif Intell,2001,32(1-4):35-66. [5] 王国俊.模糊推理系统的全蕴涵三I算法[J].中国科学:E辑,1999,29(1):43-52. WANG Guo-jun.Fully implication triple I methods for fuzzy reasoning system[J].Science in China Series E,1999,29(1):43-52.(in Chinese) [6] D MUNDICI,Averaging the truth-value in Łukasiewicz logic[J].Studia Logica,1995,55:113-127. [7] H W Liu,G J Wang.Teiple I method based on pointwise sustaining degrees[J].Computers and Mathemetics with Appplications,2008,55(11):2680-2688. [8] H W Liu,G J Wang.Unified forms of fully implication restriction methods for fuzzy reasoning[J].Information Sciences,2007,177(3):956-966. [9] G J Wang,L Fu.Unified forms of triple I method[J].Computers and Mathemetics with Appplications,2005,49(5-6):923-932. [10] H B Wu.Theory of generalized tautology in revised Kleene syetem[J].Science in China(E),2001,44(3):233-238. [11] 吴洪博,周建仁,张琼.(3n+1)值逻辑系统R0L中公式的真度性质[J].电子学报,2011,39(10):2230-2234,2229. WU Hong-bo,ZHOU Jian-ren,ZHANG Qiong. The properties of truth degrees of formulas in (3n+1)-valued logic system R0L [J].Acta Electronica Sinica,2011,39(10):2230-2234,2229.(in Chinese) [12] 汪德刚,谷云东,李洪兴.模糊模态命题逻辑及其广义重言式[J].电子学报,2007,35(2):261-264. WANG De-gang,GU Yun-dong,LI Hong-xing.Generalized tautology in fuzzy modal propositional logic[J].Acta Electronica Sinica,2007,35(2):261-264.(in Chinese) [13] 胡明娣,王国俊.模糊模态逻辑中的永真式与准永真式[J].电子学报,2009,37(11):2484-2488. HU Ming-di,WANG Guo-jun.Tautologies and quasi-tautologies in fuzzy modal logic[J].Acta Electronica Sinica,2009,37(11):2484-2488.(in Chinese) [14] 王国俊,李壁镜.Łukasiewicz n-值命题逻辑中公式的真度理论和极限定理[J].中国科学(E辑),2005,35(5):561-569. WANG Guo-jun,LI Bi-jing.Theory of truth degrees and limit theorems in Łukasiewicz n-valued propositional logic[J].Science in China(E),2005,35(5):561-569.(in Chinese) [15] 胡明娣,王国俊.对称逻辑公式在经典逻辑度量空间中的分布[J].电子学报,2011,39(2):419-423. HU Ming-di,WANG Guo-jun.Distribution of the symmetrical logic formulas in the classical logic metric space[J].Acta Electronica Sinica,2011,39(2):419-423.(in Chinese) [16] 张东晓,李立峰.二值命题逻辑公式的语构程度化方法[J].电子学报,2008,36(2):325-320. ZHANG Dong-xiao,LI Li-feng.Syntactic graded method of two-valued propositional logic formulas[J].Acta Electronica Sinica,2008,36(2):325-320.(in Chinese) [17] 李俊,王国俊.逻辑系统L*n中命题的真度理论[J].中国科学(E辑),2006,36(6):631-643. LI Jun,WANG Guo-jun.Theory of truth degrees of proposition in logic sysem L*n[J].Science in China(E),2006,36(6):631-643.(in Chinese) [18] 王国俊,宋建社.命题逻辑中的程度化方法[J].电子学报,2006,34(2):252-257. WANG Guo-jun,SONG Jian-she.Graded method in propositional logic[J].Acta Electronica Sinica,2006,34(2):252-257.(in Chinese) [19] 李壁镜,王国俊.正则蕴涵算子所对应的逻辑伪度量空间[J].电子学报,2010,38(3):497-502. LI Bi-jing,WANG Guo-jun.Logic pseudo-metric spaces of regular implication operators[J].Acta Electronica Sinica,2010,38(3):497-502.(in Chinese) [20] G J Wang,H J Zhou.Quantitatiave logic[J].Information Sciences,2009,179:226-247. [21] H B Wu.The generalized truth degrees of quantitative logic in logic system L*n [J].Computers and Mathemetics with Appplications,2010,59:2587-2596. [22] 王国俊.非数理逻辑与近似推理[M].北京:科学出版社,2000. Wang Guo-jun.Nonclassical Mathematical Logic and Approximate Reasoning[M].Beijing:Science Press,2000.(in Chinese) [23] 王国俊.数理逻辑引论与归结原理[M].北京:科学出版社,2006. Wang Guo-jun.Introduction to Mathematical Logic and Resolution Principle [M].Beijing:Science Press,2006.(in Chinese) [24] X Yang,D Yuan,K Y Qin.Lattice-Valued Logic[M].Berlin Heidelberg:Springer-Verlag,2003. [25] 郑毓信.数学方法论[M].广西:广西教育出版社,1996. Zheng Yu-xin.Mathematical Methodology[M].Guangxi:Guangxi Education Press,1996.(in Chinese) |