[1] Dietterich TG.Machine learning research:four current directions[J].AI Magazine ,1997,18(4):97-136. [2] Liu Kun-Hong.Cancer classification using rotation forest[J].Computers in Biol ogy and Medicine,2008,38(5):601-610. [3] Kim TK.Boosted manifold principal angles for image set-based recognition[J].P attern Recognition,2007,40(9):2475-2484. [4] Schapire RE.BoosTexter:A boosting-based system for text categorization[J].Mac hine Learning,2000,39(2-3):135-168. [5] L Breiman.Bagging predictors[J].Machine Learning,1996,24(2):123-140. [6] Y Freund.Experiments with a new boosting algorithm[A].Proceedings of the 13th International Conference on Machine Learning[C].Italy:Morgan Kaufm ann,1996.148-156. [7] Ho,TK.The random subspace method for constructing decision forests[J].IEEE Tra nsaction on Pattern Analysis and Machine Intelligence.1998,20(8):832-844. [8] 文学志,等.一种基于类Haar特征和改进AdaBoost分类器的车辆识别算法[J].电子学报,201 1,38(5):1121-1126. Wen Xue-zhi,et al.An algorithm based on Haar-like features and improved AdaBoo st classifier for vehicle recognition[J].Acta Electronica Sinica,2011,38(5):11 21-1126.(in Chinese) [9] 王改革,等.基于Elman-AdaBoost强预测器的目标威胁评估模型及算法[J].电子学报,2012 ,40(5):901-906. Wang Gai-ge,et al.The model and algorithm for the target threat assessment base d on Elman-AdaBoost strong predictor[J].Acta Electronica Sinica,2012,40(5):90 1-906.(in Chinese) [10] Ankit Desai,PM Jadav.An empirical evaluation of AdaBoost extensions for cost-se nsitive classification[J].International Journal of Computer Applications,2012, 44(13):34-41. [11] 王雪松,高阳,程玉虎.基于随机子空间-正交局部保持投影的支持向量机[J].电子学报,20 11,39(8):1746-1750. Wang Xue-song,Gao Yang,Cheng Yu-hu.Support vector machine based on random subs pace and orthogonal locality preserving projection[J].Acta Electronica Sinica, 2011,39(8):1746-1750.(in Chinese) [12] LI Kuncheva,JJ Rodríguez,CO Plumpton,et al.Random subspace ensembles for fMRI c lassification [J].IEEE Transactions on medical imaging,2010,29(2):531-542. [13] JM Yang,BC Kuo,PT Yu,et al.A dynamic subspace method for hyper spectral image cl assification[J].IEEE Transactions on geoscience and remote sensing,2010,48(7): 2840-2853. [14] N Garcia-Pedrajas,et al.Boosting random subspace method[J].Neural Networks,20 08,21(9):1344-1362. [15] Kennedy J,Eberhart R.Particle swarm optimization[A].Proceedings of IEEE Intern ational Conference on Neural Networks[C].Perth:IEEE Press,1995.1942-1948. [16] HU Wang,LI Zhi-shu.A simpler and more effective particle swarm optimization alg orithm[J].Journal of Software,2007,18(4):861-868. [17] 高岳林,任子晖.带有变异算子的自适应粒子群优化算法[J].计算机工程与应用,2007,43(2 5):43-47. Gao Yue-lin,Ren Zi-hui.Adaptive particle swarm optimization algorithm with mut ation operator[J].Computer Engineering and Applications,2007,43(25):43-47.(in Chinese) [18] 王晓丹,等.一种基于AdaBoost的SVM分类器[J].空军工程大学学报(自然科学版),2006,7(6 ):54-57. Wang Xiao-dan,et al.A combined SVM classifier based on AdaBoost[J].Journal of Air Force Engineering University (Natural Science Edition),2006,7(6):54-57.(in Chinese) [19] GI Webb.MultiBoosting:A technique for combining boosting and wagging[J].Machin e Learning,2000,40(2):159-196. [20] J Demsar.Statistical comparisons of classifiers over multiple data sets[J].Jou rnal of Machine Learning Research,2006,7(1):1-30. |