[1] S X Zhu,X S Kai.A class of constacyclic codes over Zpm[J].Finite Fields and Their Application,2010,16(4):243-254.[2] J F Qian,L N zhang,S X Zhu.(1+u)-constacyclic and cyclic codes over F2+uF2[J].Applied Mathematics Letter,2006,19(8):820-823.[3] M C V Amarra,F R Nemenzo.On (1-u)-cyclic codes over Fpk+uFpk[J].Applied Mathematics Letter,2008,21(11):1129-1133.[4] T abualrub,I Siap.Constacyclic codes over F2+uF2[J].Journal of the Franklin Institute,2009,346(5):520-529.[5] Shi Minjia,Zhu Shixin.Constacyclic codes over ring Fq+uFq+…+us-1Fq[J].中国科学技术大学学报,2009,39(6):583-587.[6] 朱士信,李平,吴波.环Fq+uFq+…+uk-1Fq上一类重根常循环码[J].电子与信息学报,2008,30(6) :1394-1396.[7] X S Kai,S X Zhu,Ping Li.(1+λu)-Constacyclic codes over Fp/< uk >[J].Journal of the Franklin Institute,2010,347(5):751-762.[8] H Q Dinh.Constacyclic codes of length 2s over Galois extension rings F2+uF2[J].IEEE Trans Inform Theory,2009,55(4):1730-1740.[9] H Q Dinh.Constacyclic codes of length ps over Galois extension rings of Fpm+uFpm[J].Journal of Algebra,2010,324(5):940-950.[10] X S Kai,S X Zhu.On cyclic self-dual codes[J].Applicable Algebra in Engineering,Communication and Computing,2008,19(6):509-525.[11] B Heijne,J Top.On the minimal distance of binary self-dual cyclic codes[J].IEEE Trans Inform Theory,2009,55(11):4860-4863.[12] Yan jia,San Ling,Chaoping Xing.On self-dual cyclic codes over finite fields[J].IEEE Trans Inform Theory,2011,57(4):2243-2251.[13] P Kanwar,S R López-permauth.Cyclic codes over the integers modulo pm[J].Finite Fields and Their Application,1997,3(4):334-352.[14] V S Pless,P Solé,Z Qian.Cyclic self-dual Z4-codes[J].Finite Fields and Their Application,1997,3(1):48-69.[15] X S Kai,S X Zhu.Negacyclic self-dual codes over finite chain rings[J].Designs,Codes and Cryptography,2012,62(2):161-174.[16] 施敏加,杨善林,朱士信.F2+uF2上长为2e的循环码的距离[J].电子学报,2011,39(1):29-34. Shi Min-jia,Yang Shan-lin,Zhu Shi-xin.On minimum distances of cyclic codes of length 2e over F2 +u F2[J].Acta Electronica Sinica,2011,39(1):29-34.(in Chinese)[17] 施敏加,杨善林,朱士信.环F2+uF2+…+uk-1F2上长为2s的(1+u)-常循环码的距离分布[J].电子与信息学报,2010,32(1):112-116.[18] G H Norton,A S?l?gean.On the structure of linear and cyclic codes over a finite chain ring[J].Applicable Algebra in Engineering,Communication and Computing,2000,10(6):489-506.[19] G H Norton,A S?l?gean.On the Hamming distance of linear codes over finite chain rings[J].IEEE Trans Inform Theory,2000,46(3):1060-1067. |