电子学报

• 学术论文 • 上一篇    下一篇

单站定位中的散射体位置及散射距离的估计方法——合成运动的扩展卡尔曼估计

杨天池, 程娟, 邵奇峰, 孙磊   

  1. 信息工程大学, 河南郑州 450000
  • 收稿日期:2012-10-01 修回日期:2013-10-07 出版日期:2014-04-25
    • 作者简介:
    • 杨天池 男,1978年10月出生,辽宁阜新人.2009年毕业于解放军信息工程大学,获博士学位,现为该校讲师,从事无线定位、信息安全等领域研究工作.E-mail:yang_tch@163.com;程 娟 女,1979年7月出生,河南郑州人.2009年毕业于解放军信息工程大学,获博士学位,现为该校讲师,从事信号处理、无线通信等领域研究工作. E-mail:chengjuan@163.com

The Estimation of the Scatterer Position and Scattering Distance in the Single Station Location:The EKF Estimation Based on Synthetic Motion

YANG Tian-chi, CHENG Juan, SHAO Qi-feng, SUN Lei   

  1. Information Engineering University, Zhengzhou, Henan 450000, China
  • Received:2012-10-01 Revised:2013-10-07 Online:2014-04-25 Published:2014-04-25

摘要: 圆拟合虚拟单站定位算法是无线网中非视距条件下一种有效的单站定位方法.散射体位置以及散射距离是该算法的两个关键参数,直接决定该算法的最终定位性能.本文提出合成运动的扩展卡尔曼方法,有效抑制定位过程中的二次方项对误差的乘性影响.该方法利用单站的运动信息,并根据相对运动的基本原理,将机动单站运动特性转换为伪目标的运动,在每步递推过程将非线性方程线性化近似,提高散射体位置以及散射距离的估计精度.仿真结果表明,该算法具有良好的估计性能.

关键词: 合成运动, 扩展卡尔曼, 单站定位, 散射体位置估计, 散射距离估计, 非视距

Abstract: The circle fitting and virtual station algorithm is an efficient method to locate the target station position under the non-line-of-sight (NLOS) environment by using a single station.The scatterer position and the scattering distance are the key parameters in this algorithm,and decide the location algorithm ability directly.To decrease the multiplicative noises impact of the quadratic item during the estimation process,the synthetic motion EKF method is proposed.The main idea of this method is that the non-line equation is approximate by the line equation in each iteration step.The motion information of the single station is used,and that motion is switched to the motion of pseudo target station (PTS) according to the fundamental theory of the relative motion to establish the EKF equation.As a result,the location precision also increased accordingly.The simulation results verify the performance of this method.

Key words: synthetic motion, EKF, single station location, scatterer position estimation, scattering distance estimation, NLOS

中图分类号: