一种改进的最小二乘孪生支持向量机分类算法

储茂祥, 王安娜, 巩荣芬

电子学报 ›› 2014, Vol. 42 ›› Issue (5) : 998-1003.

PDF(680 KB)
PDF(680 KB)
电子学报 ›› 2014, Vol. 42 ›› Issue (5) : 998-1003. DOI: 10.3969/j.issn.0372-2112.2014.05.026
科研通信

一种改进的最小二乘孪生支持向量机分类算法

  • 储茂祥1,2, 王安娜1, 巩荣芬1,2
作者信息 +

Improvement on Least Squares Twin Support Vector Machine for Pattern Classification

  • CHU Mao-xiang1,2, WANG An-na1, GONG Rong-fen1,2
Author information +
文章历史 +

摘要

提出了一种新的模式分类器,即广泛权重的最小二乘孪生支持向量机.该支持向量机在正、负两类样本上广泛地增加权重,很好地抑制了交叉噪声样本对数据分类的影响.其次,根据间隔最大化原理,该支持向量机在目标函数上增加了一个正规化项,实现结构风险最小化和避免在求解该目标函数时可能对病态矩阵求逆的处理.同时,提出了利用一种指数函数计算训练样本的密度来获得样本权重值的算法.该算法能够有效缩减计算权重的时间,且具有较强的鲁棒性.实验证明本文提出的广泛权重的最小二乘孪生支持向量机能够实现高精度和高效率的分类效果,而且特别适合于含有交叉噪声样本的数据集分类.

Abstract

Widely weighted least squares twin support vector machine (WWLSTSVM) is proposed for pattern classification.In WWLSTSVM,weights are widely added on error variables of data samples both in one class and the other.This widely weighted method is especially effective on eliminating the interference of intercrossing noise samples.Moreover,a regularization term is added with the theory of maximizing margin,in which the structural risk is minimized and the possible ill-conditioning is avoided for matrix inversion.Also,an effective weight algorithm with exponential function is proposed to reduce the time complexity of computing weight values and enhance its robustness for cross plane dataset.Comparative experiments show that WWLSTSVM obtains better results on eliminating the interference of noise samples and higher classification accuracy with less computing time in both linear and nonlinear cases compared with the other classifiers.

关键词

模式分类 / 最小二乘 / 孪生支持向量机 / 权重 / 指数函数

Key words

pattern classification / least squares / twin support vector machine / weight / exponential function

引用本文

导出引用
储茂祥, 王安娜, 巩荣芬. 一种改进的最小二乘孪生支持向量机分类算法[J]. 电子学报, 2014, 42(5): 998-1003. https://doi.org/10.3969/j.issn.0372-2112.2014.05.026
CHU Mao-xiang, WANG An-na, GONG Rong-fen. Improvement on Least Squares Twin Support Vector Machine for Pattern Classification[J]. Acta Electronica Sinica, 2014, 42(5): 998-1003. https://doi.org/10.3969/j.issn.0372-2112.2014.05.026
中图分类号: TP18   

参考文献

[1] Cortes C,Vapnik V.Support vector networks[J].Machine Learning,1995,20(3):273-297.
[2] Bayro-Corrochano E J,Arana-Daniel N.Clifford support vector machines for classification,regression,and recurrence[J].IEEE Trans on Neural Networks,2010,21(11):1731-1746.
[3] Ertekin S,et al.Nonconvex online support vector machines[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2011,33(2):368-381.
[4] Zhang Y S,et al.Adaptive resource allocation with SVM-based multi-hop video packet delay bound violation modeling[J].Chinese Journal of Electronics,2011,20(2):261-267.
[5] Jayadeva,et al.Twin support vector machines for pattern classification[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(5):905-910. [LL]
[6] Shao Y H,et al.Improvements on twin support vector machines[J].IEEE Trans on Neural Networks,2011,22(6):962-968.
[7] Qi Z Q,Tian Y J,et al.Robust twin support vector machine for pattern classification[J].Pattern classification,2013,46(1):305-316.
[8] Peng X J,Xu Dong.Bi-density twin support vector machines for pattern recognition[J].Neurocomputing,2013,99(1):134-143.
[9] Ye Q L,Zhao C X,et al.Weighted twin support vector machines with local information and its application[J].Neural Networks,2012,35(11):31-39.
[10] Kumar M,Gopal M.Least squares twin support vector machines for pattern classification[J].Expert System with Applications,2009,36(4):7535-7543.
[11] Chen J,Ji G R.Weighted least squares twin support vector machines for pattern classification[A].The 2nd International Conference on Computer and Automation Engineering[C].Singapore:IEEE.2010.242-246.
[12] Suykens J A K,et al.Weighted least squares support vector machines:Robustness and sparse approximation[J].Neurocomputing,2002,48(1-4):85-105.
[13] Plataniotis K N,et al.Adaptive fuzzy systems for multichannel signal processing[J].Proceedings of the IEEE,1999,87(9):1601-1622.
[14] Jin L H,et al.Improved bilateral filter for suppressing mixed noise in color images[J].Digital Signal Processing,2012,22(6):903-912.

基金

国家自然科学基金 (No.61050006)
PDF(680 KB)

Accesses

Citation

Detail

段落导航
相关文章

/