电子学报 ›› 2014, Vol. 42 ›› Issue (5): 1020-1024.DOI: 10.3969/j.issn.0372-2112.2014.05.030

• 科研通信 • 上一篇    下一篇

同标签Vague命题的Lawry乘-加逻辑 与Lawry下-上确界逻辑

张兴芳, 胡凯   

  1. 聊城大学数学科学学院, 山东聊城 252059
  • 收稿日期:2012-02-18 修回日期:2013-08-15 出版日期:2014-05-25
    • 作者简介:
    • 张兴芳 女,1957年生于山东阳谷.教授,研究生导师.研究方向为非经典数理逻辑与近似推理. E-mail:zhangxingfang2005@126.com胡 凯 男,1980年生于山东淄博.博士,讲师.研究方向为非经典数理逻辑与近似推理.
    • 基金资助:
    • 国家自然科学基金 (No.61273044)

Lawry Product-Addition Logic and Lawry Infimum-Supfimum Logic of Vague Propositions on the Same Label

ZHANG Xing-fang, HU Kai   

  1. School of Mathematical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
  • Received:2012-02-18 Revised:2013-08-15 Online:2014-05-25 Published:2014-05-25
    • Supported by:
    • National Natural Science Foundation of China (No.61273044)

摘要: 作者在另一文中,基于Lawry的不确定模型,提出了一种新的非经典命题逻辑,称为同主语同标签Vague命题的Lawry逻辑.本文又扩充了它的研究对象,利用乘积和加法算子(下确界和上确界算子)引入了同标签Vague命题的Lawry乘-加(Lawry下-上确界)真度的概念,并给出了它们的逻辑规律.由此,本文又提出了新的非经典命题逻辑,称为同标签Vague命题的Lawry乘-加(Lawry下-上确界)逻辑.这两种非经典逻辑不仅新颖,而且相比Lawry的不确定模型适应面更广.

关键词: 非经典逻辑, Vague命题, Lawry逻辑, Lawry乘-加逻辑, Lawry下-上确界逻辑

Abstract: In the other one paper,a new non-classical logic,called Lawry logic of Vague propositions with same subject on same label was presented based on Lawry’s uncertainty model.In the paper,its researchful object is extended.The concept of truth degree of Lawry product-adition (infimum-supremum) of vague propositions on same label,is introduced using product and addition (infimum and supremum),operators.Further,their logical laws are given.Consequently,non-classical logics,called Lawry Product-Addition (Lawry Infimum-Supremum) logic of vague propositions on same label,is presented.These two logics are novel,and comparing Lawry's uncertainty model,their applied scopes are wide.

Key words: non-classical logic, Vague proposition, Lawry logic, Lawry product-addition logic, Lawry infimum-supremum logic

中图分类号: