电子学报 ›› 2016, Vol. 44 ›› Issue (1): 21-26.DOI: 10.3969/j.issn.0372-2112.2016.01.004

• 学术论文 • 上一篇    下一篇

传感器位置误差情况下基于多维标度分析的时差定位算法

朱国辉1, 冯大政1, 聂卫科2   

  1. 1. 西安电子科技大学雷达信号处理国家重点实验室, 陕西西安 710071;
    2. 西北大学信息科学与技术学院, 陕西西安 710127
  • 收稿日期:2014-07-28 修回日期:2015-05-12 出版日期:2016-01-25
    • 作者简介:
    • 朱国辉 男,1987年5月出生,河南驻马店人.2006年在吉林大学获理学学士学位.现为西安电子科技大学雷达信号处理国家重点实验室硕博连读生.主要从事无源定位、雷达信号处理等方面的研究. E-mail:zhugh@stu.xidian.edu.cn 冯大政 男,1959年12月出生,陕西安康人.教授,博士生导师,中国电子学会高级会员,美国IEEE 学会会员.现工作于西安电子科技大学雷达信号处理国家重点实验室,主要从事盲信号处理,机载雷达信号处理,MIMO雷达信号处理等方面的研究工作. E-mail:dzfeng@xidian.edu.cn
    • 基金资助:
    • 国家自然科学基金 (No.61271293,No.61373177)

Multidimensional Scaling Based TDOA Localization Algorithm with Sensor Location Errors

ZHU Guo-hui1, FENG Da-zheng1, NIE Wei-ke2   

  1. 1. National Laboratory of Radar Signal Processing, Xidian University, Xi'an, Shaanxi 710071, China;
    2. School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
  • Received:2014-07-28 Revised:2015-05-12 Online:2016-01-25 Published:2016-01-25
    • Supported by:
    • National Natural Science Foundation of China (No.61271293, No.61373177)

摘要:

传统时差定位方法一般是在假设传感器位置信息准确已知的前提下进行的.然而在实际情形中,传感器位置信息往往含有随机误差,这些误差会严重影响对目标的定位精度.针对这一问题,提出了一种传感器位置误差情况下的多维标度时差定位算法.首先利用传感器位置和时差构造对称标量积矩阵,然后利用子空间理论建立关于目标位置的伪线性方程,最后通过设计加权矩阵来减少传感器位置误差对目标定位精度的影响.采用一阶小噪声扰动理论求出了目标位置估计的偏差及协方差矩阵,并通过仿真实验验证了该算法的有效性.

关键词: 无源定位, 到达时间差, 传感器位置误差, 多维标度分析, 加权最小二乘估计

Abstract:

Conventional location algorithms are based on the assumption that the sensor locations are exactly known.However, in practical situations, the sensor positions generally include random errors, which can considerably reduce the source localization accuracy.To tackle this problem, a multidimensional scaling analysis based time difference of arrival (TDOA) localization algorithm with sensor location errors is proposed.The proposed algorithm firstly constructs a symmetric matrix using the true sensor locations and TDOAs.Then a set of pseudo-linear equations with respect to the source position is formulated from the subspace theory.Finally, a weighting matrix is designed to mitigate the influence of the sensor location errors on the localization accuracy.The estimation bias and covariance matrix are derived by using first-order perturbation analysis.Simulation study validates the efficiency of the proposed algorithm.

Key words: passive location, time difference of arrival, sensor location errors, multidimensional scaling analysis, weighted least squares estimates

中图分类号: