电子学报 ›› 2017, Vol. 45 ›› Issue (2): 501-507.DOI: 10.3969/j.issn.0372-2112.2017.02.032

• 科研通信 • 上一篇    下一篇

基于集成学习的室性早博识别方法

周飞燕1,2, 金林鹏1,2, 董军1   

  1. 1. 中国科学院苏州纳米技术与纳米仿生研究所, 江苏苏州 215123;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2015-09-25 修回日期:2016-02-25 出版日期:2017-02-25
    • 通讯作者:
    • 董军
    • 作者简介:
    • 周飞燕,女,1986年4月出生,广西崇左人.博士研究生,研究方向为计算机辅助心血管疾病诊断.E-mail:fyzhou2013@sinano.ac.cn;金林鹏,男,1984年6月出生,浙江瑞安人.博士,研究方向为机器学习.E-mail:lpjin2012@sinano.ac.cn

PVC Recognition Algorithm Based on Ensemble Learning

ZHOU Fei-yan1,2, JIN Lin-peng1,2, DONG Jun1   

  1. 1. Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-09-25 Revised:2016-02-25 Online:2017-02-25 Published:2017-02-25

摘要:

本文提出了一种集成学习方法以提升室性早搏的识别性能.MIT-BIH两个通道的数据分别经过卷积神经网络进行室性早搏心拍分类,然后按照融合规则对分类结果进行融合决策,其准确率、灵敏度和特异性分别为99.91%、98.76%、99.97%,优于已有算法的室性早搏心拍分类结果.此外,面向临床应用,本文还利用卷积神经网络和诊断规则相结合的方法实现了病人间室性早搏识别实验,在有14万多条记录的数据集上,取得的准确率、灵敏度及特异性分别为97.87%、87.94%、98.02%,验证了该算法的有效性.

关键词: 室性早搏, 卷积神经网络, 诊断规则

Abstract:

In order to improve the recognition performance of premature ventricular contraction (PVC),this paper reports an algorithm based on ensemble learning.First,the tow-lead ECG signals from the MIT-BIH Arrhythmia database are classified into PVC and non PVC beats using lead convolutional neural network (LCNN) classifier.Then the results are fused with some rules.The accuracy,sensitivity and specificity of the proposed algorithm are 99.91%,98.76% and 99.97%,respectively,which are better than that of other existing algorithms for PVC beats classification.In addition,this paper realizes an inter-patient PVC recognition experiment by combining LCNN and diagnostic rules for clinical application.The effectiveness of the proposed algorithm has been confirmed by the accuracy (97.87%),sensitivity (87.94%) and specificity (98.02%) with the data set over 140000 ECG records.

Key words: premature ventricular contraction (PVC), lead convolutional neural network (LCNN), diagnosis rules

中图分类号: