
基于霍克斯过程的社交网络用户关系强度模型
A Social Networks User Relationship Strength Model Based on Hawkes Process
社交网络节点之间的关系强度建模是研究信息传播、实现推荐服务等社交网络服务的关键.传统关系强度模型主要研究简单二元关系与静态关系,未考虑用户交互影响及其动态衰减.本文提出一种基于霍克斯过程的社交网络用户关系强度模型,将用户关系强度视为潜在因子,用户相似性与历史交互行为分别视为潜在因子诱因与表象,并使用霍克斯过程刻画历史交互行为与用户关系强度之间的关系,解决了已有模型未考虑用户历史交互影响及其动态衰减的问题.采用微博社交网络数据对模型进行的评估表明,本模型可以提高用户关系强度预测精度以及基于关系强度排序Top-N邻居节点的覆盖率.
The relationship strength model between social network nodes is the key of social networks service such as information dissemination researches and recommendation system.The traditional researches focus on modeling simple binary relations and static relations, without considering dynamic attenuation of user interaction effects.Aiming at this problem, this paper proposes a social networks user relationship strength model based on Hawkes process(HP-URS), which takes the relationship strength, similarity and history interaction behavior between users as a latent factor, latent factor incentive and presentation respectively.This model uses Hawkes process to characterize relationship between history interaction behavior and user relationship strength.This model provides a solution of the disadvantages of the original model without considering user history interaction effects and their attenuation.This paper uses the data from microblog social networks evaluating HP-URS model, and the experimental results show that this model can improve relationship strength prediction accuracy and coverage rate of the Top-N neighbor nodes based on relationship strength.
社交网络 / 霍克斯过程 / 关系强度预测 / 微博 {{custom_keyword}} /
social networks / Hawkes process / relationship strength prediction / microblog {{custom_keyword}} /
[1] 荣辉桂,火生旭,胡春华,等.基于用户相似度的协同过滤推荐算法[J].通信学报,2014,35(2):16-24. Rong Hui-gui,Huo Sheng-xu,Hu Chun-hua,et al,User similarity based collaborating filtering recommendation algorithm[J].Journal on Communications,2014,35(2):16-24.(in Chinese)
[2] 徐志明,李栋,刘挺,等.微博用户的相似性度量及其应用[J].计算机学报,2014,37(1):207-218. Xu Zhi-ming,Li Dong,Liu Ting,et al,Measuring similarity between microblog users and its application[J].Chinese Journal of Computers,2014,37(1):207-218.(in Chinese)
[3] Xiang R,Neville J,Rogati M.Modeling relationship strength in online social networks[A].Proceedings of the 19th International Conference on World Wide Web[C].Raleigh,North Carolina,USA:ACM,2010.981-990.
[4] Zhang S.Influence of relationship strengths to network structures in social network[A].201414th International Symposium on Communications and Information Technologies[C].Incheon,South Korea:IEEE,2014.279-283.
[5] Gilbert E,Karahalios K.Predicting tie strength with social media[A].Proceedings of the SIGCHI Conference on Human Factors in Computing Systems[C].Monterey,California,USA:ACM,2009.211-220.
[6] Panovich K,Miller R,Karger D.Tie strength in question & answer on social network sites[A].Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work[C].Seattle,Washington,USA:ACM,2012.1057-1066.
[7] He Y,Zhang C,Ji Y.Principle features for tie strength estimation in micro-blog social network[A].2012 IEEE 12th International Conference on Computer and Information Technology[C].Chengdu,Sichuan,China:IEEE,2012.359-367.
[8] Liniger TJ.Multivariate Hawkes Processes[D].Zurich:Swiss Federal Institute of Technology Zurich,2009.
[9] Filimonov V,Bicchetti D,Maystre N,et al.Quantification of the high level of endogeneity and of structural regime shifts in commodity markets[J].Journal of International Money and Finance,2014,42:174-192.
[10] Bowsher C G.Modelling security market events in continuous time:Intensity based,multivariate point process models[J].Journal of Econometrics,2007,141(2):876-912.
[11] Hawkes A G,Adamopoulos L.Cluster models for earthquakes:Regional comparisons[J].Journal of the International Association for Mathematical Geology,1976,8(4):463-475.
[12] Juncen L,Sheng G,Yu Z,et al.Inferring links in cascade through Hawkes process based diffusion model[A].20144th IEEE International Conference on Network Infrastructure and Digital Content[C].Beijing,China:IEEE,2014.471-475.
[13] Ozaki T.Maximum likelihood estimation of Hawkes' self-exciting point processes[J].Annals of the Institute of Statistical Mathematics,1979,31(1):145-155.
[14] Guo C,Luk W.Accelerating maximum likelihood estimation for Hawkes point processes[A].201323rd International Conference on Field Programmable Logic and Applications[C].Porto,Portugal:IEEE,2013.1-6.
[15] 朱郁筱,吕琳媛.推荐系统评价指标综述[J].电子科技大学学报,2012,41(2):163-175. Zhu Yu-xiao,Lv Lin-yuan.Evaluation metrics for recommender systems[J].Journal of Electronic Science and Technology.2012,41(2):163-175.(in Chinese)
2014年国家科技支撑计划 (No.2014BAH30B01)
/
〈 |
|
〉 |