[1] Hammons J A R,Kumar P V,Calderbank A R,et al.The Z4-linearity of Kerdock, Preparata,Goethals,and related codes[J].IEEE Transactions on Information Theor y,1994,40(2):301-319.
[2] Tarokh V,Seshadri N,Calderbank A R.Space-time codes for high data rate wireless communication:Performance criterion and construction[J].IEEE Transactions Inf ormation Theory,1998,44:744-765.
[3] Dinh H Q,López-Permouth S R.Cyclic and negacyclic codes over finite chain ring s[J].IEEE Transactions on Information Theory,2005,50(8):1728-1744.
[4] Hu Peng,Li Hui,Liu Xiusheng.The generator polynomials of cyclic and negecyclic codes over finite chain ring[J].Mathematics in Picture and Theory,2011,41(2):217-221.
[5] MacWilliams F J,Sloane N J A.The Theory of Error-Correcting Codes[M].Elsevier,1977.
[6] Wan Zhexian.Quaternary Codes[M].Singapore:World Scientic Pub Co,1997.25-70.
[7] Ashikhmin A E.Generalized Hamming weights for Z4-linear codes[A].Proceedings of 1994 IEEE International Symposium on Information Theory[C].IEEE,1994.306-306.
[8] Ashikhmin A E.On generalized Hamming weights for Galois ring linear codes[J].Designs,Codes and Cryptography,1998,14(2):107-126.
[9] 朱士信.Zk线性码的对称形式的MacWilliams恒等式[J].电子与信息学报,2003,25(7):901-906. Zhu Shixin.A symmetrized MacWilliams identity of Zk-linear code[J].Journal of Electronics & Information Technology,2003,25(7):901-906.(in Chinese)
[10] Wan Zhexian.The MacWilliams identity for linear codes over Galois rings[A].Numbers Information and Complexity[C].Netherlands:Kluwer Academic Publishers,2000.333-338.
[11] 余海峰,朱士信.环F2+uF2上线性码及其对偶码的MacWilliams恒等式[J].中国科学技术大学学报,2006,36(2):1285-1288.
[12] 梁华,唐元生.环F2+uF2+u2F2上线性码的MacW-illiams恒等式[J].数学的实践与认识,2010,40(23):200-205.
[13] 许小芳,毛琪莉.环Fp+uFp+u2Fp上线性码的MacWilliams恒等式[J].数学杂志,2013,33(3):519-524.
[14] 施敏加,朱士信,李平.环F2+vF2上线性码的MacWi-lliams恒等式[J].计算机应用研究,2008,25(4):1134-1135.
[15] 刘修生,刘花璐.环Fp+vFp上线性码的MacWilliams恒等式[J].山东大学学报(理学版),2013,(12):61-65.
[16] 施敏加,杨善林.非主理想环Fp+vFp上线性码的MacWilliams恒等式[J].电子学报, 2011,39(10):2449-2453. Shi Minjia,Yang Shanlin.Macwilliams identities of linear codes over non-principal ideal ring Fp+vFp[J].Acta Electronica Sinica,2011,39(10):2449-2453.(in Chinese) |