[1] A R Hammons,P V Kumar,A R Calderbank,N JA Sloane,P Solé.The Z4-linearity of Kerdock,Preparata,Goethals,and related codes[J].IEEE Transactions on Information Theory,1994,40(2):301-319. [2] H Q Dinh.Complete distances of all negacyclic codes of length 2sover z2a[J].IEEE Transactions on Information Theory,2007,53(1):147-161. [3] S Zhu,X Kai.The hamming distances of negacyclic codes of length 2sover GR (2a,m)[J].Journal of Systems Science and Complexity,2008,21(1):60-66. [4] 施敏加,杨善林,朱士信.环F2+uF2上长为2e的循环码的距离[J].电子学报,2011,39(1):29-34.Shi Min-jia,Yang Shan-lin,Zhu Shi-xin.On minimum distance of cyclic codes of length 2<i>e over F2+uF2[J].Acta Electronica Sinica,2011,39(1):29-34.(in Chinese) [5] G H Norton,A Salagean.On the hamming distance of linear and cyclic codes over a finite chain ring[J].IEEE Transactions on Information Theory,2000,46(3):1060-1067. [6] S T Dougherty,Y H Park.On modular cyclic codes[J].Finite Fields and Their Application,2007,13(1):31-57. [7] 朱士信,黄素娟.环Fpm+uFpm+…+uk-1Fpm上(1+u)-常循环码的齐次距离分布[J].电子与信息学报,2013,35(11):2580-2583.Zhu Shi-xin,Huang Su-juan.The distribution of homogeneous distance of (1+u)-constacyc-lic codes over Fpm+uFpm+…+uk-1Fpm[J].Journal of Electronics and Information Technology,2013,35(11):2580-2583.(in Chinese) [8] X Kai,S Zhu,Y Tang.Some constacyclic self-dual codes over the integers modulo 2m[J].Finite Fields and Their Applications,2012,18(2):258-270. [9] S Zhu,X Kai.A class of constacyclic codes over zpm[J].Finite Fields and Their Applications,2010,16(4):243-254. [10] S T Dougherty,T A Gulliver,M Harada.TypeⅡself-dual codes over finite rings and even unimodular lattices[J].Journal of Algebraic Combinatorics,1997,9(3):233-250. [11] E Bannai,S T Dougherty,M Harada,M Oura.TypeⅡcodes,even unimodular lattices,and invariant rings[J].IEEE Transactions on Information Theory,1999,45(4):1194-1205. |