期刊首页 在线期刊 专题

专题

自然语言处理技术
自然语言处理技术在生活中应用广泛,例如机器翻译、手写体和印刷体字符识别、语音识别后实现文字转换、信息检索、抽取与过滤、文本分类与聚类、舆情分析和观点挖掘等。它们分别应用了自然语言处理当中的语法分析、语义分析、篇章理解等技术,是人工智能界最前沿的研究领域。时至今日AI在这些技术领域的发展已经把识别准确率从70%提高到了90%以上,但只有当准确率提高到99%及以上时,才能被认定为自然语言处理的技术达到人类水平,这仍然是巨大的困难和挑战。本专栏聚焦自然语言处理方面的相关研究,收集该领域近年来发表于本刊的文章8篇,旨在促进自然语言处理相关领域的发展。
Please wait a minute...
  • 全选
    |
  • 学术论文
    黄名选
    电子学报. 2021, 49(7): 1305-1313. https://doi.org/10.12263/DZXB.20200654
    摘要 (531) PDF全文 (579) HTML (150)   可视化   收藏
    CSCD(1)

    针对自然语言处理中查询主题漂移和词不匹配问题,提出基于CSC(Copulas-based Support and Confidence)框架的关联模式挖掘与规则扩展算法,并将基于统计学分析的关联模式与具有上下文语义信息的词向量融合,提出关联模式挖掘与词向量学习融合的伪相关反馈查询扩展模型.该模型对伪相关反馈文档集挖掘规则扩展词,对初检文档集进行词嵌入学习训练得到词向量,计算规则扩展词与原查询的向量相似度,提取向量相似度不低于阈值的规则扩展词作为最终扩展词.实验结果表明,所提扩展模型能有效地减少查询主题漂移和词不匹配问题,提高检索性能,与现有基于关联模式的和基于词向量的查询扩展方法比较,MAP(Mean Average Precision)平均增幅最大可达17.52%,对短查询更有效.所提挖掘方法可用于其他文本挖掘任务和推荐系统,以提高其性能.

  • 学术论文
    张昱, 刘开峰, 张全新, 王艳歌, 高凯龙
    电子学报. 2021, 49(6): 1059-1067. https://doi.org/10.12263/DZXB.20200134
    摘要 (1110) PDF全文 (1542)   可视化   收藏
    CSCD(9)
    目前的新闻分类研究以英文居多,而且常用的传统机器学习方法在长文本处理方面,存在局部文本块特征提取不完善的问题.为了解决中文新闻分类缺乏专门术语集的问题,采用构造数据索引的方法,制作了适合中文新闻分类的词汇表,并结合word2vec预训练词向量进行文本特征构建.为了解决特征提取不完善的问题,通过改进经典卷积神经网络模型结构,研究不同的卷积和池化操作对分类结果的影响.为提高新闻文本分类的精确率,本文提出并实现了一种组合-卷积神经网络模型,设计了有效的模型正则化和优化方法.实验结果表明,组合-卷积神经网络模型对中文新闻文本分类的精确率达到93.69%,相比最优的传统机器学习方法和经典卷积神经网络模型精确率分别提升6.34%和1.19%,并在召回率和F值两项指标上均优于对比模型.
  • 学术论文
    杨启萌, 禹龙, 田生伟, 艾山·吾买尔
    电子学报. 2020, 48(6): 1077-1083. https://doi.org/10.3969/j.issn.0372-2112.2020.06.005
    CSCD(2)
    针对深度神经网络模型仅学习当前指代链语义信息忽略了单个指代链识别结果的长期影响问题,提出一种结合深度强化学习(deep reinforcement learning)的维吾尔语人称代词指代消解方法.该方法将指代消解任务定义为强化学习环境下顺序决策过程,有效利用之前状态中先行语信息判定当前指代链指代关系.同时,采用基于整体奖励信号优化策略,相比于使用损失函数启发式优化特定的单个决策,该方法直接优化整体评估指标更加高效.最后在维吾尔语数据集进行实验,实验结果显示,该方法在维吾尔语人称代词指代消解任务中的F值为85.80%.实验结果表明,深度强化学习模型能显著提升维吾尔语人称代词指代消解性能.
  • 学术论文
    黄名选, 蒋曹清
    电子学报. 2020, 48(3): 568-576. https://doi.org/10.3969/j.issn.0372-2112.2020.03.021
    CSCD(4)
    为了改善自然语言处理应用中长期存在的主题漂移和词不匹配问题,本文首先提出一种加权项集支持度计算方法和基于项权值排序的剪枝方法,给出面向查询扩展的基于项权值排序的加权关联规则挖掘算法,讨论关联规则混合扩展、后件扩展和前件扩展模型,最后提出基于项权值排序挖掘的跨语言查询扩展算法.该算法采用新的支持度和剪枝策略挖掘加权关联规则,根据扩展模型从规则中提取高质量扩展词实现跨语言查询扩展.实验结果表明,与现有基于加权关联规则挖掘的跨语言扩展算法比较,本文扩展算法能有效遏制查询主题漂移和词不匹配问题,可用于各种语言的信息检索以改善检索性能,扩展模型中后件扩展获得最优检索性能,混合扩展的检索性能不如后件扩展和前件扩展,支持度对后件扩展更有效,置信度更有利于提升前件扩展和混合扩展的检索性能.本文挖掘方法可用于文本挖掘、商务数据挖掘和推荐系统以提高其挖掘性能.
  • 学术论文
    吴玉佳, 李晶, 宋成芳, 常军
    电子学报. 2020, 48(2): 279-284. https://doi.org/10.3969/j.issn.0372-2112.2020.02.008
    CSCD(6)
    现有的基于深度学习的文本分类方法没有考虑文本特征的重要性和特征之间的关联关系,影响了分类的准确率.针对此问题,本文提出一种基于高效用神经网络(High Utility Neural Networks,HUNN)的文本分类模型,可以有效地表示文本特征的重要性及其关联关系.利用高效用项集挖掘(Mining High Utility Itemsets,MHUI)算法获取数据集中各个特征的重要性以及共现频率.其中,共现频率在一定程度上反映了特征之间的关联关系.将MHUI作为HUNN的挖掘层,用于挖掘每个类别数据中重要性和关联性强的文本特征.然后将这些特征作为神经网络的输入,再经过卷积层进一步提炼类别表达能力更强的高层次文本特征,从而提高模型分类的准确率.通过在6个公开的基准数据集上进行实验分析,提出的算法优于卷积神经网络(Convolutional Neural Networks,CNN),循环神经网络(Recurrent Neural Networks,RNN),循环卷积神经网络(Recurrent Convolutional Neural Networks,RCNN),快速文本分类(Fast Text Classifier,FAST),分层注意力网络(Hierarchical Attention Networks,HAN)等5个基准算法.
  • 学术论文
    张志昌, 曾扬扬, 庞雅丽
    电子学报. 2020, 48(11): 2162-2169. https://doi.org/10.3969/j.issn.0372-2112.2020.11.010
    摘要 (530) PDF全文 (1480)   可视化   收藏
    CSCD(6)
    文本蕴含识别旨在识别两个给定句子之间的逻辑关系.本文通过构造语义角色和自注意力机制融合模块,把句子的深层语义信息与Transformer模型的编码部分相结合,从而增强自注意力机制捕获句子语义的能力.针对中文文本蕴含识别在数据集上存在规模小和噪声大的问题,使用大规模预训练语言模型能够提升模型在小规模数据集上的识别性能.实验结果表明,提出的方法在第十七届中国计算语言学大会中文文本蕴含识别评测数据集CNLI上的准确率达到了80.28%.
  • 学术论文
    马慧芳, 刘文, 李志欣, 蔺想红
    电子学报. 2019, 47(6): 1331-1336. https://doi.org/10.3969/j.issn.0372-2112.2019.06.021
    CSCD(3)
    短文本相似度计算在社会网络、文本挖掘和自然语言处理等领域中起着至关重要的作用.针对短文本内容简短、特征稀疏等特点,以及传统的短文本相似度计算忽略类别信息等问题,提出一种融合耦合距离区分度和强类别特征的短文本相似度计算方法.一方面,在整个短文本语料库中利用两个共现词之间的距离计算词项共现距离相关度,并以此来对词项加权从而捕获词项间内联和外联关系,得到短文本的耦合距离区分度相似度;另一方面,基于少量带类别标签的监督数据提取每类中强类别区分能力的特征项作为强类别特征集合,并利用词项的上下文来对强类别特征语义消歧,然后基于文本间包含相同类别的强类别特征数量来衡量文本间的相似度.最后,本文结合耦合距离区分度和强类别特征来衡量短文本的相似度.经实验证明本文提出的方法能够提高短文本相似度计算的准确率.
  • 科研通信
    吕品, 于文兵, 汪鑫, 计春雷, 周曦民
    电子学报. 2019, 47(10): 2228-2234. https://doi.org/10.3969/j.issn.0372-2112.2019.10.026
    CSCD(2)
    恶意评论检测是预防社会媒体平台给用户带来负面影响的一项重要工作,是自然语言处理的重要领域之一.为解决单分类器实现恶意评论检测时模型精度不稳定、boosting集成模型精度较低的问题,提出一种异构分类器堆叠泛化的方法.该方法用深度循环神经网络将多标签的恶意评论分类问题转变为二类分类,防止了模型精度不稳定;用堆叠泛化集成时单个分类器GRU(Gated Recurrent Unit)和NB-SVM(Naïve Bayes-Support Vector Machine)在模型结构和分类偏差上的差异性,改善了模型精度.在维基百科恶意评论数据集上的对比实验证明:提出的方法优于boosting集成,说明堆叠泛化异构分类器实现恶意评论检测是可行且有效的.