CIE Homepage  |  Join CIE  |  Login CIE  |  中文 

Acta Electronica Sinica ›› 2023, Vol. 51 ›› Issue (8): 2098-2109. doi: 10.12263/DZXB.20211291

• PAPERS • Previous Articles     Next Articles

Estimating Illumination Condition and Spectral Reflectance Based on the Color Variation Between Shadowed Region and Its Surrounding Regions

WANG Xiao1,3, YAO Si-yuan1,3(), DAI Peng-wen1,3, WANG Rui1,2,3, CAO Xiao-chun1,3()   

  1. 1.State Key Laboratory of Information Security,Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100093,China
    2.Zhejiang Laboratory,Hangzhou,Zhejiang 311100,China
    3.School of Cyber Security,University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2021-09-21 Revised:2021-11-17 Online:2023-08-25 Published:2023-10-31
  • Contact: YAO Si-yuan, CAO Xiao-chun E-mail:yaosiyuan@bupt.edu.cn;caoxiaochun@iie.ac.cn
  • Supported by:
    National Natural Science Foundation of China Under Grants(U20B2066);National Key Research and Development Program of China(2020AAA0109304);Open Research Projects of Zhejiang Lab(2021KB0AB01)

基于阴影和周边区域色差的光照条件和光谱反射率计算方法

王潇1,3, 尧思远1,3(), 代朋纹1,3, 王蕊1,2,3, 操晓春1,3()   

  1. 1.中国科学院信息工程研究所信息安全国家重点实验室, 北京 100093
    2.之江实验室, 浙江 杭州 311100
    3.中国科学院大学网络空间安全学院, 北京 100049
  • 通讯作者: 尧思远,操晓春 E-mail:yaosiyuan@bupt.edu.cn;caoxiaochun@iie.ac.cn
  • 作者简介:王潇 男,1991年5月生,河南平顶山人.2016年毕业于西北工业大学,获工程硕士学位.现为中国科学院信息工程研究所博士生.主要研究方向为计算机视觉、人工智能等.E-mail: wangxiao@iie.ac.cn
    尧思远 男,1990年5月生,江西赣州人.2014年毕业于中国电子科技集团电子科学研究院,获工学硕士学位.现为中国科学院信息工程研究所在读博士生.研究方向为目标跟踪检测、智能信号处理.
    代朋纹 男,1990年9月生,四川内江人.2014年毕业于重庆大学,获工学学士学位.现为中国科学院信息工程研究所博士生.主要研究方向为计算机视觉、人工智能等.E-mail: daipengwen@iie.ac.cn
    王蕊(通讯作者) 女,1981年11月生,北京人.2011年于中国科学院研究生院获得博士学位.中国科学院信息工程研究所信息安全国家重点实验室研究员、博士生导师、IEEE会员.主要研究方向为人工智能、计算机视觉、多媒体内容理解及深度学习等.E-mail: wangrui@iie.ac.cn
    操晓春 男,1980年生,北京人,2005年于中弗罗里达大学获博士学位.中国科学院信息工程研究所信息安全国家重点实验室研究员、博士生导师、IEEE高级会员.主要研究方向为人工智能、计算机视觉、网络空间安全等.
  • 基金资助:
    国家自然科学基金企业创新发展联合基金重点支持项目(U20B2066);科技创新2030-“新一代人工智能”重大项目课题(2020AAA0109304);之江实验室开放课题(2021KB0AB01)

Abstract:

The illumination condition and the spectral reflectance are very useful for scene rendering and augmented reality but difficult to collect. Thus, it is an important task to get them from ordinary image. In this paper, we proposed a method that estimates illumination condition and spectral reflectance of natural scene without training process by analyzing the color variation between shadowed region and its surrounding regions. In natural scenes, the shadowed region was only lighted by skylight while its surrounding unshadowed regions were lighted by both sunlight and skylight. The color variation between them was the effect of shielded light source when they had the same spectral reflectance. The difference between these two colors was caused by the illumination condition of captured scene, while they were connected by their spectral reflectance. These colors provided the cue to calculate the illumination condition and the spectral reflectance. We formulized the whole process of image generation using prior knowledge and model. Then, we designed an optimization function based on the relationship between these colors to estimate the illumination condition and the spectral reflectance. The results of comparison experiment and the application experiment on shadow removal showed that the proposed method performed favorably against the state-of-the-art methods.

Key words: shadowed region, unshadowed region, color variation, illumination condition, spectral reflectance

摘要:

光照条件和光谱反射率对增强现实和场景渲染任务非常有用,但是通过仪器采集比较困难,因此根据普通图像计算光照条件和光谱反射率是重要的计算机视觉任务.本文设计了一种通过分析场景中的阴影区域和周边区域颜色之间的色差,无需训练数据即可计算场景的光照条件和光谱反射率的算法.在自然场景中,阴影区域由于遮挡只能接收和反射天空光,而其周边的非阴影区域则同时受到太阳光和天空光的影响.当阴影和非阴影区域有着相同的光谱反射率时,两块区域颜色之间的色差反映了被遮挡光源的信息.两块区域之间的颜色差异由光照条件造成,又以光谱反射率为联系.因此,可以利用这两种颜色之间的关系计算光照条件和光谱反射率.本文使用先验知识和模型公式化表达某一区域在光照下呈现在图像中的颜色,然后基于两种颜色以及两者之间的色差设计了一种优化算法,通过计算最优解来计算场景的光照条件以及光谱反射率.通过在多个数据集上的一系列对比实验,以及一个使用光照条件和光谱反射率来去除阴影区域的应用实验,证明了该算法的准确性.

关键词: 阴影区域, 非阴影区域, 色差, 光照条件, 光谱反射率

CLC Number: