THz metasuface technology and application
GE Hong-yi, JI Xiao-di, JIANG Yu-ying, LI Li, WANG Fei, JIA Zhi-yuan, ZHANG Yuan
Metamaterials, having important theoretical research and application value in terahertz band, are artificial electromagnetic materials with special properties, which can regulate the frequency, amplitude, phase and polarization of electromagnetic waves. Due to the complexity of design process of metamaterials and the limitation of simulation time, the design of metamaterials is always involved in great challenges. In view of the fact that terahertz metamaterial devices have made certain achievements in biomedicine, broadband communication, security screening and other fields, this paper firstly describes the research progress and problems existing in the design process of terahertz metamaterial devices in traditional design methods, and sums up in detail the research results of encoded metamaterials, especially encoded hypersurfaces and programmable hypersurfaces. Additionally, the application of deep learning algorithms in THz (TeraHertz) metamaterial structure design is summarized. Finally, the challenges and expanding research directions of intelligent method in THz metamaterial structure design are discussed. This research not only provides a reference for people to fully grasp the simple, fast and intelligent design methods, but also puts forward some novel ideas for the development and application of intelligent design methods in terahertz metamaterials.