3D Radar Tracking Algorithm with Gaussianized Converted Measurements
SHENG Hu1, ZHAO Wen-bo2, ZHANG Yuan1
1. No. 38 Research Institute of CETC, Hefei, Anhui 230031, China;
2. Unmanned Aerial Vehicle Department, Army Artillery and Air Defense Academy, Hefei, Anhui 230037, China
摘要 最佳线性无偏估计(BLUE,Best Linear Unbiased Estimation)滤波用于雷达目标跟踪时,有计算量小,置信度高等优点.但是当互斜距测量误差较大时,BLUE滤波会产生非高斯转换量测,导致跟踪精度降低.为解决此问题,对其量测转换模型进行修正:通过引入方位预测,减小方位误差三角函数的非线性影响,得到准高斯分布的转换量测.分析视线坐标系下BLUE滤波的性能,推导引入方位预测的条件,给出改进算法工作流程.推导三坐标雷达下的滤波模型参数,提出转换量测高斯化水平的评估指标并仿真证明:改进算法的转换量测更逼近高斯分布,因此跟踪性能更好,而计算量只有轻微增加.本算法思想同样适用于其他非线性误差较大的场合,对解决类似问题有借鉴意义.
Abstract:Best linear unbiased estimation (BLUE) filter is widely used in radar target tracking for its efficiency and robustness.Its estimation performance is deteriorated by the non-Gaussian converted measurement noises under the condition of large cross-range errors.To mitigate the problem,a modified converted measurement model with predicted bearing is proposed.The predicted bearing can help to alleviate the nonlinearity caused by bearing error trigonometric function and obtain pseudo-Gaussian converted measurements.Theoretic analysis of the proposed BLUE filter in the line-of-sight coordinates is derived.The constraints to use the predicted bearing is derived.The filtering diagram of the improved algorithm is given.The filtering model parameters for 3D radar tracking system are derived.The Gaussian level indexes of the converted measurements are provided.Simulation results show the converted measurements of the proposed BLUE are more closer to the Gaussian distribution,so its accuracy improves significantly with minor computation burden,which means it can provide real-time and accurate estimation for radar target tracking.The fundamental idea also applies to other occasions with relatively large nonlinear errors,thus providing some references for similar applications.
[1] Zhao Zhan-lue.Best linear unbiased filtering with nonlinear measurements for target tracking[J].IEEE Transactions on AES,2004,40(4):1324-1336.
[2] Fränken D.Consistent unbiased linear filtering with polar measurements[A].200710th International Conference on Information Fusion[C].New York,USA:IEEE Inc,2007.1-8.
[3] 王炜,李丹,姜礼平,金裕红.可处理多普勒量测的最佳线性无偏估计算法[J].电子与信息学报,2015,37(6):1336-1342. Wang Wei,Li Dan,Jiang Li-pin,Jin Yu-hong.The best linear unbiased estimation algorithm with Doppler measurements[J].Journal of Electronics & Information Technology,2015,37(6):1336-1342.(in Chinese)
[4] 李丹,王炜.极坐标系下可处理多普勒量测的BLUE跟踪算法[J].电子学报,2016,44(7):1656-1661. Li Dan,Wang Wei.The BLUE tracking algorithm with the Doppler measurements in the polar coordinates[J].Acta Electronica Sinica,2016,44(7):1656-1661.(in Chinese)
[5] 李为,李一平,封锡盛.基于卡尔曼滤波预测的无偏量测转换方法[J].控制与决策,2015,30(2):229-235. Li Wei,Li Yi-ping,Feng Xi-sheng.Tracking with prediction-conditioned unbiased converted measurements[J].Control and Decision,2015,30(2):229-235.(in Chinese)
[6] 韩崇昭,等.多源信息融合[M].北京:清华大学出版社,2010.155-167. Han Chong-zhao,et al.Multi-source Information Fusion[M].Beijing:Tsinghua University Press,2010.155-167.(in Chinese)
[7] Bordonaro S,Willett P,Bar-Shalom Y.Bias elimination in tracking with converted position and Doppler measurements[A].Proceeding of the 51st IEEE Conference on Decision and Control[C].New York,USA:IEEE Inc,2012.4089-4094.
[8] Zhou Gong-jian,Pelletier M,Kirubarajan T,Quan Tai-fan.Statically fused converted position and Doppler measurement Kalman filters[J].IEEE Transactions on AES,2014,50(1):300-318.
[9] Mao Yan-hui,Li Xiao-rong,Duan Zhan-sheng.Unbiased measurement model conversion for tracking with multiple radars or sonar[A].201231st Chinese Control Conference[C].New York,USA:IEEE Inc,2012.897-903.
[10] Bordonaro S,Willett P,Bar-Shalom Y.Decorrelated unbiased converted measurement Kalman filter[J].IEEE Transactions on AES,2014,50(2):1431-1444.
[11] Bordonaro S,Willett P,Bar-Shalom Y.Unbiased tracking with converted measurements[A].Proceeding of the IEEE Radar Conference[C].New York,USA:IEEE Inc,2012.741-745.
[12] Ienkaran A,Simon H.Cubature Kalman filters[J].IEEE Transactions on Automatic Control,2009,54(6):1254-1269.
[13] Julier S J,Uhlmann J K.Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations[A].Proceeding of the American Control Conference[C].New York,USA:IEEE Inc,2002.887-892.
[14] Arulampalam M S,Maskell S,Gordon N,Clapp T.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
[15] Bar-Shalom Y,Li Xiao-rong,Kirubarajan T.Estimation with Applications to Tracking and Navigation:Theory,Algorithms,and Software[M].New York,USA:Wiley,2001.128-130.
[16] 盛琥,王金根,等.基于高程补偿的BLUE算法在塔康中的应用研究[J].系统工程与电子技术,2016,38(8):1752-1757. Sheng Hu,Wang Jin-gen,et al.Application research of altitude compensation based BLUE algorithm in TACON[J].Systems Engineering and Electronics,2016,38(8):1752-1757.(in Chinese)