协同演化是解决大尺度连续优化问题的一种有效策略.但是,对于决策变量重叠型(决策变量不可分且相互依赖)的高维问题,其分组方法可能会误导算法的搜索.针对这一情况,本文提出一种全新的协同演化策略(Differential Evolution Cooperative Coevolution with Correlation Learning Between Variables,DECC-CLV),其思想是首先计算演化种群分布所包含的主特征轴,然后计算各维决策变量在主轴上的投影值并利用它们之间的正负相关性进行分组.该算法在迭代过程中,利用期望最大化算法对种群进行概率主成分分析,并根据决策变量在当前种群主轴上的投影值大小关系对其进行动态分组.通过和目前主流的演化算法在CEC2013的第三类函数上的仿真试验和分析,验证了算法的有效性和适用性.
基于超扩展规则,证明了EPCCL(Each Pair Contains Complementary Literal)理论的合并过程是可并行执行的,并设计了针对多个EPCCL理论的并行合并算法PUAE(Parallel computing Union of Any number of EPCCL).通过对EPCCL理论原始子句集的利用,提出了另一种高效的EPCCL理论并行合并算法imp-PUAE(improvement of PUAE).UKCHER(computing Union sets of maximum terms for Knowledge Compilation based on Hyper Extension Rule)是一种可并行的EPCCL理论编译算法,分别利用PUAE和imp-PUAE设计了两个并行知识编译算法P-UKCHER(UKCHER with PUAE)和impP-UKCHER(UKCHER with imp-PUAE).实验结果表明:P-UKCHER算法虽然没有提升UKCHER算法的效率,但能够提升UKCHER算法编译结果的质量,最好情况下可提升4倍;而impP-UKCHER算法能够提高UKCHER算法的效率,同时也能够提升编译结果的质量,同样最好情况下可提升4倍.
最佳线性无偏估计(BLUE,Best Linear Unbiased Estimation)滤波用于雷达目标跟踪时,有计算量小,置信度高等优点.但是当互斜距测量误差较大时,BLUE滤波会产生非高斯转换量测,导致跟踪精度降低.为解决此问题,对其量测转换模型进行修正:通过引入方位预测,减小方位误差三角函数的非线性影响,得到准高斯分布的转换量测.分析视线坐标系下BLUE滤波的性能,推导引入方位预测的条件,给出改进算法工作流程.推导三坐标雷达下的滤波模型参数,提出转换量测高斯化水平的评估指标并仿真证明:改进算法的转换量测更逼近高斯分布,因此跟踪性能更好,而计算量只有轻微增加.本算法思想同样适用于其他非线性误差较大的场合,对解决类似问题有借鉴意义.
模型诊断方法是人工智能领域重要的系统故障自动检测方法,被广泛应用于软件故障检测和硬件诊断.近年来由于电路规模和复杂度不断增大,其诊断难度也不断增大.本文通过对电路模型特征的研究,结合LLBRS-tree(Last-Level Based on Reverse Search-tree)诊断算法提出分组式诊断方法GD(Grouped Diagnosis):首先结合电路特征确定组件的故障相关性并对电路组件进行分组,可缩减电路中需检测的规模;其次,利用分组后电路并结合非诊断解定理和SAT(SATisfiability)求解特征定位部分非诊断解,从而避免该部分的一致性检测来加速求解.本文算法可应用于电子电路故障诊断领域,并且实验结果表明该算法与LLBRS-tree算法相比求解效率平均提高了1.5倍,最多提高了3倍.
云计算为代表的新型计算模式以灵活的"服务合约"为核心商业特征,通过动态整合各类云服务为用户提供不同粒度的增值服务.但是传统以QoS(Quality of Service,服务质量)为核心约束的服务组合方法,无法满足用户对服务服务质量的深层要求,即对服务信任程度的规范.为此本文提出了一种基于信任合成的云服务动态组合方法,该方法通过定义云服务的信任属性,将其分解为基础信任和经验信任的集合.将基础信任评价问题建模为云服务属性判断问题,利用Bayes合情推理分析了属性不可穷举情况下基础信任的审定与反驳.将经验信任评价问题建模为云服务交互行为判断问题,利用Chebyshe和Bernstein定理给出经验信任的置信度,进而为经验信任的量化提供依据.实验结果表明,本文所提出的方法可以在持续变化的云环境下有效地组织和提供云服务,进而满足新型计算模式动态多样化应用需求.
在重建空间数据时,如果条件数据较少甚至没有任何条件数据,重建结果常常出现较多的不确定性,此时适合采用基于统计原理的随机模拟方法重建空间数据.多点信息统计法(Multiple-Point Statistics,MPS)是目前随机模拟的主流方法,它可以将训练图像中提取的本质特征复制到重建区域.由于传统采用线性降维的MPS无法较好处理非线性数据,而局部线性嵌入(Locally Linear Embedding,LLE)可以实现对非线性数据的降维,因此提出LLE与MPS相结合的空间数据不确定性重建方法.利用该方法对图像数据进行重建实验,实验结果证明该方法的有效性.
如何准确地检测和定位图像中的人脸是人脸检测领域的关键问题.为了进一步提高人脸检测器的性能,常见的方法是增加训练数据集或采用更鲁棒的人脸特征表示,而训练人脸检测器的一个基础工作是:为训练图像中的人脸标注边界框.但标注的人脸边界框是否应该包含耳朵信息,以及对训练出的侧脸检测器性能的影响尚未被研究.本文的实验结果表明:在侧脸数据集上训练人脸检测器时,如果人脸边界框包含耳朵信息,基于DPM(Deformable Parts Model)方法训练得到的侧脸检测器使侧脸检测的准确率降低1.9%,召回率提高6.3%.而基于Viola&Jones和Fast R-CNN方法训练得到的侧脸检测器使准确率分别提高6.8%和4.4%,召回率分别提高14.9%和12.9%.这说明包含耳朵信息训练出的侧脸检测模型,有助于提高侧脸检测率.
目前对Web服务QoS(Quality of Service)的预测研究,通常预测QoS的静态值,很少预测QoS值的置信区间.本文借助非参数统计学的Bootstrap技术,提出估计Web服务QoS值置信区间的方法;然后利用与当前Web用户相似的其他Web用户调用待预测Web服务的QoS历史数据,预测当前Web用户调用待预测Web服务的QoS值的置信区间.本文估计了WSDream数据集1中每个用户调用每个Web服务的QoS值的置信区间,实验发现这些置信区间的上下限近似服从重尾分布.通过随机选择WSDream数据集1中60%到90%的用户和Web服务作为训练集,预测另外10%到40%的用户和Web服务的QoS值,实验结果表明预测的QoS置信区间与估计的QoS置信区间的平均覆盖率超过70%,最高达76%.在服务选择或服务推荐时给用户提供一个估计的或预测的QoS置信区间,可以更好地满足用户的个性化需求.
本文提出了一种离散蝙蝠算法求解带时间窗的车辆路径问题(vehicle routing problem with time window).该算法提出了蝙蝠位置的定义、速度的定义、位置更新操作、速度更新操作、频率更新操作,并采用惩罚机制与向量比较机制相结合的方法处理相关约束条件.该算法引入了随机插入策略、最少客户车辆插入搜索、普通插入搜索、交换搜索、带时间窗的2-Opt搜索等策略来扩大搜索空间、加强算法的收敛效率.实验结果表明:所提出算法具有较强的寻优能力、较高的鲁棒性、较少的时间耗费;本文所采用的关键参数值和策略能提高所提出算法的性能;通过假设检验证明了所提出算法与对比算法之间的算法性能均有显著性差异.
为了构造线性最近邻量子线路,降低线性量子可逆线路的量子代价,提出了一种基于矩阵变换的线性量子线路综合与优化方法.该方法给出了线路的矩阵表示和基于矩阵的近邻CNOT(Controlled NOT Gate)门判定,并提出矩阵分组的最佳方案,保证了线路综合中CNOT门数量最优.为了实现量子线路近邻化,提出了swap门的矩阵表示及线路近邻化规则,证明了两种swap门添加方式的等效性;提出了不同情况下swap门的消除规则,降低了近邻化后量子线路的量子代价.选择benchmark例题库中具有代表性的线路进行实验,与已有的量子线路近邻化算法相比,线路量子代价平均优化率为34.31%.