1 |
HINOJOJ M, MARTÍNEZCL, TORRALBAA. Internally Compensated LDO Regulators for Modern System-on-Chip Design[M]. Switzerland: Springer, 2018: 14-28.
|
2 |
CHEN, KE-HORNG. Power Management Techniques for Integrated Circuit Design[M]. Singapore: John Wiley & Sons Singapore Pte. Ltd., 2016: 34-49.
|
3 |
GUPTAV, RINCÓN-MORAG. A low dropout, CMOS regulator with high PSR over wideband frequencies[C]//2005 IEEE International Symposium on Circuits and Systems. Japan: IEEE, 2005: 4245-4248.
|
4 |
LEEC H, MCCLELLANK, CHOMAJ. A supply-noise-insensitive CMOS PLL with a voltage regulator using DC-DC capacitive converter[J]. IEEE Journal of Solid-State Circuits, 2001, 36(10): 1453-1463.
|
5 |
INGINOJ M, KAENELV V. A 4-GHz clock system for a high-performance system-on-a-chip design[J]. IEEE Journal of Solid-State Circuits, 2001, 36(11): 1693-1698.
|
6 |
YANGB, DROSTB, RAOS, et al. A high-PSR LDO using a feedforward supply-noise cancellation technique[C]//2011 IEEE Custom Integrated Circuits Conference(CICC). USA: IEEE, 2011: 1-4.
|
7 |
EL-NOZAHIM, AMERA, TORRESJ, et al. High PSR low drop-out regulator with feed-forward ripple cancellation technique[J]. IEEE Journal of Solid State Circuits, 2010, 45(3): 565-577.
|
8 |
HoE N Y. Wide-loading-range fully integrated LDR with a power-supply ripple injection filter[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2012, 59(6): 356-360.
|
9 |
JIANGJ Z, WEIS, JOSEPHS, et al. A 65-nm CMOS low dropout regulator featuring > 60-dB PSRR over 10-MHz frequency range and 100-mA load current range[J]. IEEE Journal of Solid-State Circuits, 2018, 53(8): 2331-2342.
|
10 |
JOSHIK, MANANDHARS, BAKKALOGLUB. A 5.6 μA wide bandwidth, high power supply rejection linear low-dropout regulator with 68 dB of PSR up to 2 MHz[J]. IEEE Journal of Solid-State Circuits, 2020, 55(8): 2151-2160.
|
11 |
YUNS J, YUNJ S, YONGS K. Capless LDO regulator achieving -76 dB PSR and 96.3 fs FOM[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 64(10): 1147-1151.
|
12 |
LIM Y, LEEJ, PARKS, et al. An external capacitorless low-dropout regulator with high PSR at all frequencies from 10 kHz to 1 GHz using an adaptive supply-ripple cancellation technique[J]. IEEE Journal of Solid-State Circuits, 2018, 53(9): 2675-2685.
|
13 |
CHANG-JOONP, ONABAJOM, SILVA-MARTINEZJ. External capacitor-less low drop-out regulator with 25 dB superior power supply rejection in the 0.4—4 MHz range[J]. IEEE Journal of Solid-State Circuits, 2013, 49(2): 486-501.
|
14 |
MANT Y, MOKP K T, CHANM. A high slew-rate push-pull output amplifier for low-quiescent current low-dropout regulators with transient-response improvement[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2007, 54(9): 755-759.
|
15 |
LIG, QIANH, GUOJ, et al. Dual active-feedback frequency compensation for output-capacitorless LDO with transient and stability enhancement in 65-nm CMOS.[J] IEEE Transactions on Power Electronics, 2019, 35(1): 415-429.
|
16 |
MINGX, LIQ, ZHOUZ K, et al. An Ultrafast Adaptively Biased Capacitorless LDO With Dynamic Charging Control[J]. Circuits and Systems II: Express Briefs, IEEE Transactions on, 2012, 59(1): 40-44.
|
17 |
CHAVA CHAITANYAK, JOSESILVA-MARTINEZ. A frequency compensation scheme for LDO voltage regulators[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, 51(6): 1041-1050.
|
18 |
LINH C, WUH H, CHANGT Y. An active-frequency compensation scheme for cmos low-dropout regulators with transient-response improvement[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2008, 55(9): 853-857.
|
19 |
QUX, ZHOUZ K, ZHANGB, et al. An ultralow-power fast-transient capacitor-free low-dropout regulator with assistant push-pull output stage[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2013, 60(2): 96-100.
|
20 |
HUANGY, LUY, MALOBERTIF, et al. Nano-ampere low-dropout regulator designs for iot devices[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(11): 4017-4026.
|
21 |
GUOJ, LEUNGK N. A 6-w chip-area-efficient output-capacitorless ldo in 90-nm CMOS technology[J]. IEEE Journal of Solid State Circuits, 2010, 45(9): 1896-1905.
|