基于N阶近邻路网的车辆行程时间估计模型

章登义, 欧阳黜霏, 吴文李

电子学报 ›› 2015, Vol. 43 ›› Issue (12) : 2491-2496.

PDF(1792 KB)
PDF(1792 KB)
电子学报 ›› 2015, Vol. 43 ›› Issue (12) : 2491-2496. DOI: 10.3969/j.issn.0372-2112.2015.12.022
学术论文

基于N阶近邻路网的车辆行程时间估计模型

  • 章登义, 欧阳黜霏, 吴文李
作者信息 +

N-order Neighbor Road Network Based Vehicle Travel Time Estimation Model

  • ZHANG Deng-yi, OUYANG Chu-fei, WU Wen-li
Author information +
文章历史 +

摘要

车联网的提出为智能交通的研究提供了新的交通信息收集技术.针对短时交通中车辆的路网行程时间估计问题,提出了基于N阶近邻的隐马尔科夫模型,利用马尔科夫性质来解决道路行程时间的前后关联性问题,同时考虑不同道路的异构性构建了N阶近邻路网模型来模拟路网间的交互影响.针对短时交通中实时数据更新的问题,提出基于道路关联性算法,并结合车联网的采集技术给出了迭代更新模型的方法.实验表明,本文提出的方法在短时交通车辆行程时间预测中精度较高,能够在车辆行进中做出实时预测.

Abstract

The development of Internet of vehicles provides a new traffic information collection technique for the study of intelligent transportation.In this article,we propose an N-order hidden Markov model to approach the vehicle travel time prediction problem,utilizing the Markov nature to model the internship of road network.We also promote an N-order neighbor road network to address the heterogeneity of road.A non-trivia update algorithm is applied to handle the real time data approaching issue.We also prove the temporality of the N-order hidden Markov model in travel time prediction.Experimental results on authentic data indicate the effectiveness and accuracy of this approach.

关键词

行程时间预测 / 隐马尔科夫模型 / 聚类

Key words

travel time prediction / hidden Markov model / cluster

引用本文

导出引用
章登义, 欧阳黜霏, 吴文李. 基于N阶近邻路网的车辆行程时间估计模型[J]. 电子学报, 2015, 43(12): 2491-2496. https://doi.org/10.3969/j.issn.0372-2112.2015.12.022
ZHANG Deng-yi, OUYANG Chu-fei, WU Wen-li. N-order Neighbor Road Network Based Vehicle Travel Time Estimation Model[J]. Acta Electronica Sinica, 2015, 43(12): 2491-2496. https://doi.org/10.3969/j.issn.0372-2112.2015.12.022
中图分类号: TP301   

参考文献

[1] Yunfei Fang.A new model for lane reservation problem with time-dependent travel times[A].10th IEEE International Conference on IEEE[C].Washington:IEEE,2013.367-372.
[2] Tongyu Zhu.Travel time prediction for float car system based on time series[A].International Conference on Advanced Communication Technology[C].Washington:IEEE,2010.1503-1508.
[3] Mengdan Gao.Analysis of travel time patterns in urban using taxi gps data[A].IEEE International Conference on Green Computing Communications[C].Washington:IEEE,2013.512-517.
[4] Till Wohlfarth.A data-mining approach to travel price forecasting[A].International Conference on Machine Learning and Applications Workshops[C].Washington:IEEE,2011.84-89.
[5] Jiankai Wang.Vehicle reidentification with self-adaptive time windows for real-time travel time estimation[J].IEEE Trans on ITS,2013,15(2):540-562.
[6] Ding H,Trajcevski G,Scheuermann P,et al.Querying and mining of time series data:experimental comparison of representations and distance measures[A].International Conference on Very Large Data Bases[C].San Fransisco:Morgan Kaufmann,2008.1542-1552.
[7] Shangyao Yan.A car pooling model and solution method with stochastic vehicle travel times[J].IEEE Trans on ITS,2013,15(1):47-56.
[8] 曹天扬,申莉.一种应用路阻函数的路段行驶时间预测方法[A].第八届中国智能交通年会论文[C].北京:电子工业出版社,2014.533-539.
[9] Jungme Park,Yi Lu.Intelligent trip modeling for the prediction of an origin-destination traveling speed profile[J].IEEE Trans on ITS,2014,15(3):1039-1046.
[10] J Park,D Li,YMurphey,J Kristinsson,et al.Real time vehicle speed prediction using a neural network traffic model[A].IEEE International Joint Conference on Neural Network[C].Washington:IEEE,2011.2991-2996.
[11] Teh Y,Jordan M.Hierarchical Bayesian Nonparametric Models with Applications.Bayesian Nonparametrics Principles and Practice[M].London:Cambridge University Press,2009.1-47.
[12] Wang P,Wang H,et al.Finding semantics in time series [A].International Conference on Special Interest Group on Management of Data[C].NewYork:ACM,2011.385-396.
[13] Won P,Melek M,Golnaraghi F.A kalman particle filter based position and orientation estimation method using a position sensor inertial measurement unit hybrid system industrial electronics[J].IEEE Trans on Industrial Electronics,2010,57(5):1787-1798.
[14] Chen Y,Hu B,Keogh E.DTW-D:time series semi-supervised learning from a single example[A].SIGKDD[C].NewYork:ACM,2013.383-391.
[15] Paisley J,Wang C,et al.Nested hierarchical dirichlet processes[J].ArXiv Preprint ArXiv,2012,12(10):136-158.
[16] Xu Z,MacEachern S,Xu X.Modeling non-gaussian time series with nonparametric bayesian models[J].IEEE Trans on PAMI,2015,37(2):372-382.
[17] Van Lint.Reliable real-time framework for short-term freeway travel time prediction[J].Journal of transportation engineering,2006,132(12):921-932.
[18] Rice J,Van Zwet.A simple and effective method for predicting travel times on freeways[J].IEEE Trans on ITS,2004,5(3):200-207.
[19] Zhang X,Rice J A.Short-term travel time prediction[J].Transportation Research Part C:Emerging Technologies,2003,11(3):187-210.
[20] Fei X,Eisenman S,Mahmassani H,et al.Application of dynasmart-x to the maryland chart network for real-time traffic management center decision support[A].12th World Congress Intelligent Transportation System[C].Washington:IEEE,2005.341-347.

基金

国家自然科学基金 (No.60903035,No.41001296); 国家863高技术研究发展计划 ( (No.2013AA12A301)

PDF(1792 KB)

1301

Accesses

0

Citation

Detail

段落导航
相关文章

/