[1] Weinsberg U,Bhagat S,Ioannidis S,et al.Blurme:inferring and obfuscating user gender based on ratings[A].Proceedings of the Sixth ACM Conference on Recommender Systems[C].Dublin,Ireland:ACM,2012.195-202.
[2] Calandrino J A,Kilzer A,Narayanan A,et al."You might also like:" privacy risks of collaborative filtering[A].Proceedings of the 2011 IEEE Symposium on Security and Privacy[C].Washington,DC,USA:IEEE,2011.231-246.
[3] 熊平,朱天清,王晓峰.差分隐私保护及其应用[J].计算机学报,2014,37(1):101-122. Xiong P,Zhu T Q,Wang X F.A survey on differential privacy and applications[J].Chinese Journal of Computers,2014,37(1):101-122.(in Chinese)
[4] Mcsherry F,Mironov I.Differentially private recommender systems:building privacy into the net[A].Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].Paris,France:ACM,2009.627-636.
[5] Dwork C.Differential privacy[A].Proceedings of the 33rd International Conference on Automata,Languages and Programming[C].Venice,Italy:Springer,2006.1-12.
[6] Resnick P,Varian H R.Recommender systems[J].Communications of the ACM,1997,40(3):56-58.
[7] Bogers T,Koolen M.Second workshop on new trends in content-based recommender systems (CBRecSys 2015)[A].Proceedings of the 9th ACM Conference on Recommender Systems[C].Vienna,Austria:ACM,2015.339-340.
[8] Bogers T,Koolen M.Report on RecSys 2015 workshop on new trends in content-based recommender systems[J].ACM SIGIR Forum,2016,49(2):141-146.
[9] Anava O,Golan S,Golbandi N,et al.Budget-constrained item cold-start handling in collaborative filtering recommenders via optimal design[A].Proceedings of the 24th International Conference on World Wide Web[C].Florence,Italy:ACM,2015.45-54.
[10] Jiang X,Liu W,Cao L,et al.Coupled collaborative filtering for context-aware recommendation[A].Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence[C].Texas,USA:AAAI,2015.4172-4173.
[11] Liu Z,Wang Y X,Smola A.Fast differentially private matrix factorization[A].Proceedings of the 9th ACM Conference on Recommender Systems[C].Vienna,Austria:ACM,2015.171-178.
[12] 印桂生,张亚楠,董宇欣,等.基于受限信任关系和概率分解矩阵的推荐[J].电子学报,2013,42(5):904-911. Yin G S,Zhang Y N,Dong Y X,et al.A constrained trust recommendation using probabilistic matrix factorization[J].Acta Electronica Sinica,2013,42(5):904-911.(in Chinese)
[13] Zhang W,Wang J.A collective bayesian poisson factorization model for cold-start local event recommendation[A].Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].Sydney,Australia:ACM,2015.1455-1464..
[14] Kouki P,Fakhraei S,Foulds J,et al.HyPER:A flexible and extensible probabilistic framework for hybrid recommender systems[A].Proceedings of the 9th ACM Conference on Recommender Systems[C].Vienna,Austria:ACM,2015.99-106.
[15] Boutet A,Frey D,Guerraoui R,et al.Privacy-preserving distributed collaborative filtering[A].Proceedings of the Second International Conference,NETYS 2014[C].Marrakech,Morocco:Springer,2014.169-184.
[16] Vallet D,Friedman A,Berkovsky S.Matrix factorization without user data retention[A].Proceedings of the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining[C].Tainan,Taiwan:Springer,2014.569-580.
[17] Nikolaenko V,Ioannidis S,Weinsberg U,et al.Privacy-preserving matrix factorization[A].Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security[C].Berlin,Germany:ACM,2013.801-812.
[18] Berkovsky S,Kuflik T,Ricci F.The impact of data obfuscation on the accuracy of collaborative filtering[J].Expert Systems with Applications,2012,39(5):5033-5042.
[19] Zhu X,Sun Y.Differential privacy for collaborative filtering recommender algorithm[A].Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics[C].New Orleans,Louisiana,USA:ACM,2016.9-16.
[20] Koren Y.Collaborative filtering with temporal dynamics.Commun ACM[J].Communications of the ACM,2010,53(4):89-97.
[21] Xiong L,Chen X,Huang T,et al.Temporal collaborative filtering with bayesian probabilistic tensor factorization[A].Proceedings of the 2010 SIAM International Conference on Data Mining[C].Columbus,Ohio,USA:DBLP,2010.211-222.
[22] Khoshneshin M,Street W N.Incremental collaborative filtering via evolutionary co-clustering[A].Proceedings of the Fourth ACM Conference on Recommender systems[C].Barcelona,Spain:ACM,2010.325-328.
[23] Dwork C,Mcsherry F,Nissim K.Calibrating noise to sensitivity in private data analysis[A].Proceedings of the Third Conference on Theory of Cryptography[C].New York,USA:Springer,2006.265-284.
[24] Dwork C.Differential privacy:A survey of results[A].Proceedings of the 5th International Conference on Theory and Applications of Models of Computation[C].Xian,China:Springer,2008.1-19.
[25] Berlioz A,Friedman A,Kaafar M A,et al.Applying differential privacy to matrix factorization[A].Proceedings of the 9th ACM Conference on Recommender Systems[C].Vienna,Austria:ACM,2015.107-114.
[26] Rennie J D M,Srebro N.Fast maximum margin matrix factorization for collaborative prediction[A].Proceedings of the 22nd International Conference on Machine Learning[C].Bonn,Germany:ACM,2005.713-719.
[27] Salakhutdinov R,Mnih A.Probabilistic matrix factorization[A].Proceedings of Advances in Neural Information Processing Systems[C].Vancouver,Canada:NIPS,2007.1257-1264. |