电子学报 ›› 2017, Vol. 45 ›› Issue (9): 2281-2291.DOI: 10.3969/j.issn.0372-2112.2017.09.032

• 学术论文 • 上一篇    下一篇

结合手势二进制编码和类-Hausdorff距离的手势识别

冯志全1,2, 杨学文1,2, 徐涛1,2, 刘弘3, 吕娜1,2, 杨晓辉1,2, 徐治鹏1,2   

  1. 1. 济南大学信息科学与工程学院, 山东济南 250022;
    2. 山东省网络环境智能计算技术重点实验室, 山东济南 250022;
    3. 山东省分布式计算机软件新技术重点实验室, 山东济南 250014
  • 收稿日期:2015-02-04 修回日期:2015-11-13 出版日期:2017-09-25
    • 作者简介:
    • 冯志全,男,1964年出生,博士,教授,硕士生导师,CCF会员,主要研究方向为人机交互、虚拟现实、图像处理.E-mail:ise_fengzq@ujn.edu.cn;杨学文,男,1988年出生,硕士研究生,主要研究方向为人机交互、虚拟现实.E-mail:515031162@qq.com;吕娜,女,1979年生,博士,讲师,主要研究方向为人机交互;杨晓辉,男,1985年生,博士,讲师,主要研究方向为人机交互;徐治鹏,男,1989年生,硕士研究生,主要研究方向为人机交互.
    • 基金资助:
    • 国家自然科学基金项目 (No.61472163,No.61603151); 国家重点研发计划项目 (No.2016YFB1001403); 山东省重点研发计划项目 (No.2015GGX101025); 济南大学博士科研基金 (No.XBS1534)

Gesture Recognition Based on Combining Gesture Binary Descriptor and Hausdorff-Like Distance

FENG Zhi-quan1,2, YANG Xue-wen1,2, XU Tao1,2, LIU Hong3, LÜ Na1,2, YANG Xiao-hui1,2, XU Zhi-peng1,2   

  1. 1. School of Information Science and Engineering, University of Jinan, Jinan, Shandong 250022, China;
    2. Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Jinan, Shandong 250022, China;
    3. Shandong Provincial Key Laboratory for Novel Distributed Computer Softwave Technology, Jinan, Shandong 250014, China
  • Received:2015-02-04 Revised:2015-11-13 Online:2017-09-25 Published:2017-09-25
    • Supported by:
    • National Natural Science Foundation of China (No.61472163, No.61603151); Program of National Key Research and Development Program of China国家重点研发计划 National Key Research and Development Program of China (No.2016YFB1001403); Key Research and Development Project of Shandong Provicne (No.2015GGX101025); Doctoral Science Research Foundation of Jinan University (No.XBS1534)

摘要: 针对目前动态手势识别方法受手势旋转、平移、缩放的影响,并解决手势识别的实时性问题,提出一种基于手势二进制编码和类-Hausdorff距离模板匹配的手势识别方法.首先,把分割好的手势图像进行标准化处理,求出标准化图像中的手势主方向,建立二维手势直角坐标系,提取空间手势特征;其次,根据前五帧手势图像中手势像素点个数的变化量识别出动态手势类型;然后,用手势二进制描述子从动态手势类型中再筛选出可能的候选手势集合;最后,用类-Hausdorff距离模板匹配方法从候选手势集合中识别出最终手势.主要创新点在于:提出的动态手势类型识别和手势二进制描述子匹配的方法,大大缩短了动态手势识别的时间;提出的结合手势主方向的类-Hausdorff距离方法,不仅对旋转、平移和缩放手势具有不变性,而且对区分度较小的手势也具有较高的识别准确率.实验结果表明,在光照相对稳定的条件下,该方法能够实时准确的实现动态手势识别,总体识别率达到95%以上,对发生缩放的手势识别率能达到92%以上,对发生旋转的手势识别率能达到87%以上.本文算法已经在一个基于手势的人机交互界面中得到应用.

关键词: 动态手势识别, 手势主方向, 动态手势类型识别, 手势二进制描述子, 类-Hausdorff距离

Abstract: Since the dynamic gesture recognition algorithm is influenced by rotation,translation and scaling,and real-time gesture recognition is still a challenging issue,we propose a dynamic gesture recognition algorithm which is based on the combination of gesture binary descriptor and Hausdorff-like distance template matching.Firstly,we converted the segmented gesture image to the standardized image,then calculated the main direction of gesture in the image,and built a 2D rectangular coordinate system to extract the gesture features.Secondly,the specific dynamic gesture type can be identified according to changes in the amount of gesture pixel points from the top five frames.Next,we used gesture binary descriptor to select a part of gesture from the specific dynamic gesture type.Finally,the method of Hausdorff-like distance template matching is used to recognize the final gesture.The main innovation of this paper embodies in two aspects.Firstly,the dynamic gesture type recognition and the method of gestures binary descriptor matching proposed in this paper greatly shorten the time cost of dynamic gesture recognition.Secondly,Hausdorff-like distance method with the main direction of gesture not only has the in-variance on rotation,translation and scaling gestures,but also has a higher recognition rate on smaller gestures.Experimental results show that this algorithm can achieve real-time correct recognition of gestures in relatively stable light conditions.The overall recognition rate can reach 95%,the recognition rate of scal-ing gestures is more than 92% and the recognition rate of rotation gestures is more than 87%.This algorithm has been applied in a human-computer interface system based on hand gesture.

Key words: dynamic gesture recognition, the main direction of gesture, dynamic gesture type recognition, gesture binary descriptor, Hausdorff-like distance

中图分类号: