[1] Dag Sonntag,J MPeña, Manuel Gomez-Olmedo.Approximate counting of graphical models via MCMC revisited[J].International Journal of Intelligence Systems,2015,30(3):384-420.
[2] M Frydenberg.The chain graph Markov property[J].Scandinavian Journal of Statistics,1990,17(4):333-353.
[3] S L Lauritzen,N Wermuth.Graphical models for associations between variables,some of which are qualitative and some quantitative[J].Annals of Statistics,1989,17(1):31-57.
[4] S A Andersson,D Madigan,M D Perlman.An alternative Markov property for chain graphs[J].Scandianavian Journal of Statistics,2001,28(1):33-85.
[5] D R Cox,N Wermuth.Linear dependencies represented by chain graphs[J].Statistical Science,1993,8(3):204-283.
[6] Dag Sonntag,J M Peña.Chain graph interpretations and their relations[J].International Journal of Approximate Reasoning,2015,58:39-56.
[7] 王飞跃,韩素青,等译.概率图模型原理与技术[M].清华大学出版社,2015.
[8] Tsamardinos I,Brown L E,Aliferis C F.The max-min hill-climbing Bayesian network structure learning algorithm[J].Machine Learning,2006,65(1):31-78.
[9] 朱明敏,刘三阳,杨有龙.基于混合方式的贝叶斯网络等价类学习算法[J].电子学报,2013,41(1):98-104. ZHU M M,Liu S Y,Yang Y L.Structural learning Bayesian network equivalence classes based on a hybrid method[J].Acta Electronica Sinica,2013,41(1):98-104.(in Chinese)
[10] Milan Studeny.On recovery algorithm for chain graphs[J].International Journal of Approximate Reasoning,1997,17(2-3):265-293.
[11] J MPeña.Learning AMP chain graphs under faithfulness[A].Proceedings of the 6th European Workshop on Probabilistic Graphical Models[C].Granada,Spain,2012.251-258.
[12] D Sonntag,J M Peña.Learning multivariate regression chain graphs under faithfulness[A].Proceedings of the 6th European Workshop on Probabilistic Graphical Models[C].Granada,Spain,2012.299-306.
[13] Zongming Ma,Xianchao Xie,Zhi Geng.Structure learning of chain graphs via decomposition[J].Journal of Machine Learning Research,2008,9(9):2847-2880.
[14] Xianchao Xie,Zhi Geng,Qiang Zhao.Decomposition of structure learning about directed acyclic graphs[J].Artificial Intelligence,2006,170(4-5):422-439.
[15] J M Peña,Dag Sonntag,Jens D Nielsen.An inclusion optimal algorithm for chain graph structure learning[A].Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS)[C].Reykjavik,Iceland,2014.778-786.
[16] J D Nielsen,T Kocka,J M Peña.On local optima in learning Bayesian networks[A].Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence[C].Acapulco,Mexico,2003.435-442.
[17] Dag Sonntag,Matti Jarvisalo,J M Peña, Antti Hyttinen.Learning optimal chain graphs with answer set programming[A].Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence[C].Amsterdam,Netherlands,2015.822-831.
[18] Dimitris Margaritis,Sebastian Thrun S.Bayesian network induction via local neighborhoods[A].Advances in Neural Information Processing Systems 12[C].Denver,USA,2000.505-511.
[19] Dimitris Margaritis.Learning Bayesian network model structures from data[D].Pittsburgh:Carnegie Mellon University,2003.
[20] J M Peña.Faithfulness in chain graph:The discrete case[J].International Journal of Approximate Reasoning,2009,50:1306-1313.
[21] J M Peña.Faithfulness in chain graphs:the Gaussian case[A].Proceedings of the 14th International Conference on Artificial Intelligence and Statistics[C].Florida,USA,2011.588-599.
[22] Richard E Neapolitan.Learning Bayesian Networks[M].Pearson Prentice Hall,2004. |