命名数据网络(Named Data Networking,NDN)是以内容为中心的新型网络架构,其随处缓存策略存在缓存冗余过多、邻居缓存利用率低等问题,导致缓存空间的浪费及缓存效率的低下.本文提出的融合沿路径非协作和路径外协作的缓存路由机制(K-Medoids Hash Routing,KMHR),使用K-medoids算法选取层次簇内的中心点,并针对不同流行度的内容分别采用Hash路由及最短路径路由,保证簇内高流行度内容的精确定位和唯一性,降低缓存冗余,提高缓存效率.通过真实网络拓扑仿真得出,KMHR机制具有最低的请求时间、最优的路由增益和较少的缓存内容数量.
卷积自编码器(Convolutional Auto Encoder,CAE)提取的粗粒度池化特征具有一定范围内旋转和平移的不变性,因而得到广泛使用.然而,目前CAE仍主要依靠经验调节内部参数以获取满足要求的粗粒度池化特征.本文将CAE看作一个整体,从概率上分析了影响其表现的具体原因,构建了一个通用框架用于调节其中的主要参数以获取更好的粗粒度特征.首先从概率上权衡了粗粒度特征在池化层上的判别性与不变性,并在CAE中选择合适的卷积范围和白化参数.然后通过分析池化域内特征的稀疏度选择相应的池化方法以获取具有更好可分离性的粗粒度池化特征.在两个公开数据库(STL-10和CIFAR-10)的实验结果表明本文提出的方法可以指导CAE提取到更好的粗粒度池化特征并在多类分类任务中表现得更好.