针对跳频信号的高精度时差估计问题,分析了跳频信号相关函数的模糊特性,提出了基于多跳相干积累的跳频信号时差估计方法.多跳相关函数中存在周期副峰,将导致时差估计出现周期模糊,提出了两种消除模糊的方法——单跳时差平均法与相关函数包络拟合法.两种方法获得的时差粗值可以确定在相关主峰附近小范围精确搜索的搜索区间,在此区间内进行时差估计可以消除周期模糊.单跳时差平均法通过对单跳时差估计进行非相干平均获得时差粗值.相关函数包络拟合法通过搜索到的多个周期峰值,进行包络拟合获得时差粗值.仿真表明,两种算法性能明显优于常规的互模糊函数法,均能降低无模糊时差估计对相关输出信噪比的要求,提高无模糊时差估计所要求的频率间隔.相关函数包络拟合法性能更优,但运算量更大.
Abstract
In order to estimate the time difference of arrival (TDOA) of frequency hopping signal accurately,the ambiguous characteristic of the correlation function is analyzed,and the TDOA estimation method of frequency hopping signal based on multi-hop coherent integration is investigated.The periodic peaks in the multi-hop correlation function will lead to ambiguous estimation of the TDOA;so two approaches to eliminate ambiguity are proposed:the approach of ambiguity elimination by TDOA averaging of single-hop (TASH) and by envelope fitting of correlation function (EFCF).Ambiguity elimination is achieved through fine peak searching between a small interval nearby the main peak,and the small interval is determined by the coarse TDOA obtained by means of TASH or EFCF.The difference between TASH and EFCF is that the first approach obtains the coarse TDOA by incoherent averaging of TDOA estimation of single-hop,while the second approach obtains the coarse TDOA by the envelope of correlation function which is fitted by using multiple periodic peaks found by whole searching.Numerical simulations demonstrate that the performance of the two proposed methods is obviously superior to the conventional CAF,and the requirement for the correlation output SNR of unambiguous estimation can be reduced,the frequency interval for unambiguous estimation can be increased.The EFCF has better performance but greater computational complexity.
关键词
跳频信号 /
时差模糊 /
单跳时差平均 /
相关函数包络拟合 /
模糊消除
{{custom_keyword}} /
Key words
frequency hopping signal /
TDOA ambiguity /
TDOA averaging of single-hop (TASH) /
envelope fitting of correlation function (EFCF) /
ambiguity elimination
{{custom_keyword}} /
中图分类号:
TN97
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Mills R,Prescott G.Detectability models for multiple access low probability-of-intercept networks[J].IEEE Transactions on Aerospace and Electronic Systems,2000,36(3):848-858.
[2] Paul C C.Emitter location accuracy using TDOA and differential Doppler[J].IEEE Transactions on Aerospace and Electronic Systems,1982,18(2):214-218.
[3] Jesper R J,Jesper K N,Christensen M G.On frequency domain models for TDOA estimation[A].Proceedings of 2015 International Conference on Acoustics,Speech and Signal Processing[C].South Brisbane:IEEE,2015.11-15.
[4] 魏合文.被动定位系统参数估计与多维标度定位技术研究[D].成都:西南电子电信技术研究所,2009. Wei he-wen.On Parameter Estimation and Multidimensional Scaling Positioning in Passive Localization System[D].Chengdu:Southwest Institute of Electronics and Telecommunications,2009.(in Chinese)
[5] Wang Jun,Xu Yang,Xu Peng.A linear method for TDOA estimation of frequency-hopping signal[A].Proceedings of 8th International Conference on Wireless Communications,Networking and Mobile Computing[C].Limassol:IEEE,2012.1-4.
[6] 刘伟,罗景青.一种新的宽带跳频信号时延估计方法及精度分析[J].信号处理,2010,26(9):1323-1328. Liu Wei,Luo Jing-qing.A new time delay estimate method of wide-band FH signal and precision analysis[J].Signal Processing,2010,26(9):1323-1328.(in Chinese)
[7] 闫云斌,全厚德,崔佩璋.一种新的跳频信号时延估计方法[J].电讯技术,2013,53(3):288-292. Yan Yun-bin,Quan Hou-de,Cui Pei-zhang.A novel time delay estimation method of frequency-hopping signals[J].Telecommunication Engineering,2013,53(3):288-292.(in Chinese)
[8] Alexander S,Warren K H,William C C.Geolocation of frequency-hopping transmitters via satellite[J].IEEE Transactions on Aerospace and Electronic Systems,1993,29(4):1228-1236.
[9] Guey J C.Reduced-complexity delay-Doppler correlator for time-frequency hopping signals[A].Proceedings of 2009 International Conference on Acoustics,Speech and Signal Processing[C].Taipei:IEEE,2009.2521-2524.
[10] Alexander G,Richard R,Stefan Z,et al.A wideband crosscorrelation technique for high precision time delay estimation of frequency hopping GSM signals[A].Proceedings of the 41st European Microwave Conference[C].Manchester:IEEE,2011.33-36.
[11] 欧阳鑫信,万群,熊瑾煜,等.慢跳跳频信号的时差估计方法[J].现代雷达,2016,38(2):19-22. Ouyang xin-xin,Wan Qun,Xiong Jin-yu,et al.TDOA estimation of slow-hopping FH signal[J].Modern Radar,2016,38(2):19-22.(in Chinese)
[12] 欧阳鑫信,万群,曹景敏,等.跳频信号的时差直接定位[J].电子学报,2017,45(4):820-825. Ouyang xin-xin,Wan Qun,Cao Jing-min,et al.TDOA-based direct geolocation of frequency-hopping signals[J].Acta Electronica Sinica,2017,45(4):820-825.(in Chinese)
[13] Knapp C H,Carter G C.The generalized correlation method for estimation of time delay[J].IEEE Transactions on ASSP,1976,24(4):320-327.
[14] Stein S.Algorithms forambiguity function processing[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1981,29(3):588-599.
[15] Richard J K,Brian M S.Bounds and algorithms for time delay estimation on parallel,flat fading channels[A].Proceedings of 2008 International Conference on Acoustics,Speech and Signal Processing[C].Las Vegas:IEEE,2008.2413-2416.
[16] Liu Ning,Xu Zheng-yuan,Brian M S.Ziv-Zakai time-delay estimation bounds for frequency-hopping waveforms under frequency-selective fading[J].IEEE Transactions on Signal Processing,2010,58(12):6400-6406.
[17] Ding Cun-sheng,Ryoh F,Yuichiro F,et al.Sets of frequency hopping sequences:bounds and optimal constructions[J].IEEE Transactions on Information Theory,2009,55(7):3297-3304.
[18] Kim D G,Park G H,Kim H N,et al.Computationally efficient TDOA/FDOA estimation for unknown communication signals in electronic warfare systems[J].IEEE Transactions on Aerospace and Electronic Systems,2018,54(1):77-89.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}