[1] FAN L,STRASSER-WEIPPL K,LI J J,et al.Breast cancer in China[J].The Lancet Oncology,2014,15(7):e279-e289.
[2] 包尚联,杜江,高嵩.核磁共振骨皮质成像关键技术研究进展[J].物理学报,2013,62(8):088701. BAO Shang-Lian,DU Jiang,GAO Song.Review of the ultrashort echo time magnetic resonance imaging of cortical bone[J].Acta Phys Sin,2013,62(8):088701.(in Chinese)
[3] OKTAY O,FERRANTE E,KAMNITSAS K,et al.Anatomically constrained neural networks (ACNNs):Application to cardiac image enhancement and segmentation[J].IEEE Transactions on Medical Imaging,2018,37(2):384.
[4] QIAN S,WENG G.Medical image segmentation based on FCM and level set algorithm[A].The 7th IEEE International Conference on Software Engineering and Service Science (ICSESS)[C].US:IEEE,2016.225-228.
[5] 陈志彬,邱天爽,SU Ruan.一种基于FCM和Level Set的MRI医学图像分割方法[J].电子学报,2008,36(9):1733-1737. CHEN Zhi-Bin,QIU Tian-Shuang,SU Ruan.FCM and level set based segmentation method for brain MR images[J].Acta Electronica Sinica,2008,36(9):1733-1737.(in Chinese)
[6] 王顺凤,冀晓娜,张建伟,等.局部熵驱动的GAC模型在生物医学图像分割中的应用[J].电子学报,2013,41(12):2487-2492. WANG Shun-feng,JI Xiao-na,ZHANG Jian-wei,et al.Application of GAC model driven by the local entropy on medical image segmentation[J].Acta Electronica Sinica,2013,41(12):2487-2492.(in Chinese)
[7] 范虹,朱艳春,王芳梅,等.多分辨率水平集算法的乳腺MR图像分割[J].物理学报,2014,63(11):118701. FAN Hong,ZHU Yan-Chun,WANG Fang-Mei,et al.Segmentation of breast MR images based on multiresolution level set algorithm[J].Acta Phys Sin,2014,63(11):118701.(in Chinese)
[8] 葛婷,牟宁,李黎.基于softmax回归与图割法的脑肿瘤分割算法[J].电子学报,2017,45(3):644-649. GE Ting,MU Ning,LI li.A brain tumor segmentation method based on softmax regression and graph cut[J].Acta Electronica Sinica,2017,45(3):644-649.(in Chinese)
[9] VESAL S,RAVIKUMAR N,ELLMAN S,et al.Comparative Analysis of Unsupervised Algorithms for Breast MRI Lesion Segmentation[M].Berlin:Springer,2018.257-262.
[10] KANG D,SHIN S Y,SUNG C O,et al.An improved method of breast MRI segmentation with Simplified K-means clustered images[A].Proceedings of the 2011 ACM Symposium on Research in Applied Computation[C].US:ACM,2011.226-231.
[11] MOFTAH H M,AZAR A T,AL-SHAMMARI E T,et al.Adaptive k-means clustering algorithm for MR breast image segmentation[J].Neural Computing & Applications,2014,24(7-8):1917-1928.
[12] RODRIGUEZ A,LAIO A.Clustering by fast search and find of density peaks[J].Science,2014,344(6191):1492.
[13] 谢娟英,高红超,谢维信.K近邻优化的密度峰值快速搜索聚类算法[J].中国科学:信息科学,2016,46(2):258-280. XIE J Y,GAO H C,XIE W X.A density peak fast search clustering algorithm for K nearest neighbor optimization[J].Chinese Science:Information Science,2016,46(2):258-280.(in Chinese)
[14] 刘金华,佘堃.基于双树复小波与波原子的图像扩散滤波[J].物理学报,2011,60(12):124203. LIU Jin-Hua,SHE Kun.Image diffusion filtering based on dual tree complex wavelet and wave atoms[J].Acta Phys Sin,2011,60(12):124203.(in Chinese)
[15] SELESNICK I W,BARANIUK R G,KINGSBURY N C.The dual-tree complex wavelet transform[J].IEEE Signal Processing Magazine,2005,22(6):123-151.
[16] SENDUR L,SELESNICK I W.Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency[J].IEEE Transactions on Signal Processing,2002,50(11):2744-2756.
[17] CHANG S G,YU B,VETTERLI M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society,2002,9(9):1532-1546.
[18] LI M,JIA Z,YANG J,et al.An algorithm for remote sensing image denoising based on the combination of the improved bishrink and DTCWT[J].Procedia Engineering,2011,24(6):470-474.
[19] DONOHO D,JOHNSTONE I.Adapting to unknown smoothness via wavelet shrinkage[J].Publications of the American Statistical Association,1995,90(432):1200-1224.
[20] DICE L R.Measures of the amount of ecologic association between species[J].Ecology,1944,26(3):297-302.
[21] PERONA P,MALIK J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2002,12(7):629-639.
[22] ACHANTA R,SHAJI A,SMITH K,et al.Slic superpixels[J].Ecole Polytechnique Fédéral de Lausssanne (EPFL),Tech Rep,2010,149300:155-162.
[23] 余丽玲,阳维,冯衍秋,等.Rician噪声水平场的估计及其在MR图像去噪中的应用[J].中国生物医学工程学报,2013,32(5):532-538. YU Li-Ling,YANG Wei,FENG Yan-Qiu,et al.Estimation of spatially variable level field of rician noise and its application to MR image denoising[J].Chinese Journal of Biomedical Engineering,2013,32(5):532-538.(in Chinese) |