[1] 屈尔庆,崔月姣,徐森,等.改进的Gabor滤波器带钢表面缺陷显著性检测[J].华中科技大学学报(自然科学版),2017,45(10):12-17. QU Er-qing,CUI Yue-jiao,XU Sen.Saliency defect detection in strip steel by improved Gabor filter[J].Hua zhong Univ of Sci & Tech (Natural Science Edition),2017,45(10):12-17.(in Chinese)
[2] 任海鹏,马展峰.基于复杂网络特性的带钢表面缺陷识别[J].自动化学报,2011,37(11):1407-1412. REN Hai-Peng,MA Zhan-Feng.Strip steel surface defect recognition based on complex network characteristics[J].Acta Automatica Sinica,2011,37(11):1407-1412.(in Chinese)
[3] ZHU S G,DU J P,REN N.A novel simple visual tracking algorithm based on hashing and deep learning[J].Chinese Journal of Electronics,2017,26(05):1073-1078.
[4] XU K,XU Y,ZHOU P,et al.Application of RNAMlet to surface defect identification of steels[J].Optics and Lasers in Engineering,2018,105(06):110-117.
[5] SONG K C,YAN Y H.A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects[J].Applied Surface Science,2013,285(part_PB):858-864.
[6] HE D,XU K,ZHOU P.Defect detection of hot rolled steels with a new object detection framework called classification priority network[J].Computers & Industrial Engineering,2019,128(03):290-297.
[7] FU G Z,SUN P Z,ZHU W B,et al.A deep-learning-based approach for fast and robust steel surface defects classification[J].Optics and Lasers in Engineering,2019,121(10):397-405.
[8] HE Y,SONG K C,MENG Q G,et al.Semi-supervised defect classification of steel surface based on multi-training and generative adversarial network[J].Optics and Lasers in Engineering,2019,122(11):294-302.
[9] HE D,XU K,ZHOU P,et al.Surface defect classification of steels with a new semi-supervised learning method[J].Optics and Lasers in Engineering,2019,117(06):40-48.
[10] HE Y,SONG K C,MENG Q G,et al.An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J].IEEE Transactions on Instrumentation and Measurement,2019,PP(99):1-1.
[11] 姜维,张重生,殷绪成.基于深度学习的场景文字检测综述[J].电子学报,2019,47(5):1152-1161. JIANG Wei,ZHANG Chong-sheng,YIN Xu-cheng.Deep learning based scene text detection:A survey[J].Acta Electronica Sinica,2019,47(5):1152-1161.(in Chinese)
[12] 张慧,王坤峰,王飞跃.深度学习在目标视觉检测中的应用进展与展望.自动化学报,2017,43(08):1289-1305. ZHANG Hui,WANG Kun-Feng,WANG Fei-Yue.Advances and perspectives on applications of deep learning in visual object detection[J].Acta Automatica Sinica,2017,43(08):1289-1305.(in Chinese)
[13] 罗会兰,童康,孔繁胜.基于深度学习的视频中人体动作识别进展综述[J].电子学报,2019,47(5):1162-1173. LUO Hui-lan,TONG Kang,KONG Fan-sheng.The progress of human action recognition in videos based on deep learning:A review[J].Acta Electronica Sinica,2019,47(5):1162-1173.(in Chinese)
[14] REN S Q,HE K M,GIRSHICK R B,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[15] HE K M,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[A].Proceedings of the IEEE International Conference on Computer Vision[C].Venice:IEEE Press,2017.2961-2969.
[16] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[A].Computer Vision and Pattern Recognition[C].USA:IEEE,2016.779-788.
[17] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[A].Computer Vision and Pattern Recognition[C].USA:IEEE,2017.6517-6525.
[18] REDMON J,FARHADI A.YOLOv3:An incremental improvement[A].Computer Vision and Pattern Recognition[C].arXiv Preprint,2018,arXiv:1804.02767.
[19] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[A].Proceedings of the IEEE European Conference on Computer Vision[C].Amsterdam,The Netherlands:IEEE,2016.21-37.
[20] 石杰,周亚丽,张奇志.基于改进Mask RCNN和Kinect的服务机器人物品识别系统[J].仪器仪表学报,2019,40(04):216-228. SHI Jie,ZHOU Ya-li,ZHANG Qi-zhi.Service robot item recognition system based on improved mask RCNN and kinect[J].Chinese Journal of Scientific Instrument,2019,40(04):216-228.(in Chinese)
[21] 裴伟,许晏铭,朱永英,等.改进的SSD航拍目标检测方法[J].软件学报,2019,30(03):738-758. PEI Wei,XU Yan-Ming,ZHU Yong-Ying,et al.The target detection method of aerial photography images with improved SSD[J].Journal of Software,2019,30(03):738-758.(in Chinese)
[22] 黄继鹏,史颖欢,高阳.面向小目标的多尺度Faster-RCNN检测算法[J].计算机研究与发展,2019,56(02):319-327. HUANG Ji-peng,SHI Ying-huan,GAO Yang.Multi-scale faster-RCNN algorithm for small object detection[J].Journal of Computer Research and Development,2019,56(02):319-327.(in Chinese)
[23] 王俊强,李建胜,周学文,等.改进的SSD算法及其对遥感影像小目标检测性能的分析[J].光学学报,2019,39(06):373-382. Wang Jun-qiang,Li Jian-sheng,Zhou Xuewen,et al.Improved SSD algorithm and its performance analysis of small target detection in remote sensing images[J].Acta Optica Sinica,2019,39(06):373-382.(in Chinese)
[24] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[A].Computer Vision and Pattern Recognition[C].USA:IEEE,2016.770-778. |