高玉君, 梁刚, 蒋方婷, 许春, 杨进, 陈俊任, 王浩
当前社会网络已取代传统媒体成为信息交流的重要平台,社会网络中的信息具有传播速度快,范围广,即时性强等优点.然而,由于发布信息时缺乏有效的监管手段,导致社会网络平台同时也成为谣言传播的温床.因此,快速有效地检测出社会网络谣言,对净化网络环境,维护公共安全至关重要.本文首先对谣言定义进行阐述,并描述当前谣言检测的问题及检测过程;其次,介绍不同数据获取方式并分析其利弊,同时对比谣言检测中不同的数据标注方法;第三,根据谣言检测技术的发展对现有的人工、机器学习和深度学习的谣言检测方法进行分析对比;第四,通过实验在相同公开数据集下对当前主流算法进行实证评估;最后,对社会网络谣言检测技术面临的挑战进行归纳并总结全文.