为了提高多目标粒子群优化算法解的分布性,文中提出了一种自适应分解式多目标粒子群优化算法(Adaptive Multiobjective Particle Swarm Optimization based on Decomposed Archive,AMOPSO-DA).首先,设计了一种基于优化解空间分布信息的外部档案更新策略,有效提升了AMOPSO-DA的空间搜索能力;其次,提出了一种基于粒子进化方向信息的飞行参数调整方法,有效平衡了AMOPSO-DA的探索和开发能力.最后,将提出的AMOPSO-DA应用于多目标优化问题,实验结果表明,文中提出的AMOPSO-DA能够获得分布性较好的优化解.
针对现有RGBD场景流计算模型在复杂场景、非刚性运动和运动遮挡等情况下易产生场景过度平滑和运动边缘模糊的问题,提出一种基于FRFCM(Fast and Robust Fuzzy C-Means)聚类与深度优化的RGBD场景流计算方法.首先以图像序列连续帧间光流信息为基准,利用FRFCM聚类算法对输入图像进行初始分割,然后根据深度图像的运动边缘信息优化初始分割结果,提取高置信度的运动分层信息.最后设计基于图像分割的RGBD场景流能量函数,采用金字塔变形策略计算精确的场景流结果.分别采用Middlebury和MPI-Sintel数据库所提供的测试图像集对本文方法和现有的RGBD场景流算法进行综合对比分析,实验结果表明本文方法相对于其他方法具有更好的场景流估计精度和鲁棒性,有效改善了场景过度平滑和运动边缘模糊问题.