电子学报 ›› 2020, Vol. 48 ›› Issue (7): 1375-1379.DOI: 10.3969/j.issn.0372-2112.2020.07.017

• 学术论文 • 上一篇    下一篇

Geodesic流多伯努利检测前跟踪方法

柳超1,2, 孙进平1, 袁常顺3, 王子微1   

  1. 1. 北京航空航天大学电子信息工程学院, 北京 100191;
    2. 海军 92853部队, 辽宁葫芦岛 125106;
    3. 北京航空航天大学杭州创新研究院, 浙江杭州 310051
  • 收稿日期:2019-06-28 修回日期:2019-10-19 出版日期:2020-07-25 发布日期:2020-07-25
  • 作者简介:柳超 男,1984年5月生,山东宁阳人,博士研究生,主要研究方向为雷达数据处理.E-mail:LC2016@buaa.edu.cn;孙进平 男,1975年1月生,甘肃天水人,博士,教授,博士生导师,主要研究方向为高分辨率雷达信号处理、数据处理、稀疏微波成像.E-mail:sunjinping@buaa.edu.cn
  • 基金资助:
    国家自然科学基金(No.61471019,No.U1633122)

Multi-Bernoulli Track-Before-Detect Method with Geodesic Flow

LIU Chao1,2, SUN Jin-ping1, YUAN Chang-shun3, WANG Zi-wei1   

  1. 1. School of Electronic and Information Engineering, Beihang University, Beijing 100191, China;
    2. PLA 92853 Unit, Huludao, Liaoning 125106, China;
    3. Hangzhou Innovation Research Institute, Beihang University, Hangzhou, Zhejiang 310051, China
  • Received:2019-06-28 Revised:2019-10-19 Online:2020-07-25 Published:2020-07-25

摘要: 由于粒子退化,基于粒子滤波的多伯努利检测前跟踪滤波器对多目标后验密度的估计不准确,导致量测非相参积累的效果不理想.为此,将Geodesic粒子流引入多伯努利检测前跟踪算法,以提升后验密度估计的准确度.此外,合并航迹时利用目标的航向信息,从而降低航迹交叉时不同目标的航迹被错误合并的概率.通过Rayleigh杂波中Swerling 1型起伏目标的检测及跟踪结果证明了所提算法的性能.

关键词: 检测前跟踪, 多伯努利滤波器, 粒子流, 航迹合并

Abstract: Due to the particle degeneracy,the particle filter based multi-Bernoulli track-before-detect (TBD) filter has an inaccurate estimate of the multi-target posterior density,which leads to the poor performance of measurement non-coherent integration.In order to solve this issue,the Geodesic particle flow is introduced into the multi-Bernoulli TBD algorithm to improve the estimation of the posterior density.In addition,in the track-merging step,the course information of the target is exploited,which reduces the probability of merging tracks of different targets when they cross.The performance of the proposed algorithm is verified by the simulation results of Swerling 1 fluctuating targets detecting and tracking in Rayleigh clutter.

Key words: track-before-detect, multi-Bernoulli filter, particle flow, track merging

中图分类号: