[1] Spitas V,Spitas C,Michelis P.Real-time measurement of shear fatigue crack propagation at high-temperature using the potential drop technique[J].Measurement,2008,41(04):424-432.
[2] Nayeb-Hashemi H,Swet D,Vaziri A.New electrical potential method for measuring crack growth in nonconductive materials[J].Measurement,2004,36(02):121-129.
[3] Antonarulrajah A,Ramos V P,Fazluddin S B,Rand B.Evaluation of the electrical potential drop technique in the determination of crack growth resistance-curves of carbon composites and carbon bonded refractories[J].Journal of Materials Science,2005,40(02):373-380.
[4] 李智军,薛河.直流电位降裂纹测深仪的数值标定[J].西安科技大学学报,2012,32(01):116-120. Li zhijun,Xue he.Numerical calibration of crack monitor based on direct current potential drop[J].Journal of Xi'an University of Science and Technology,2012,32(01):116-120.(in Chinese)
[5] 董立谨.核电主回路安全端金属焊接件结构特征与应力腐蚀行为研究[D].东北大学,2014.
[6] Minnebruggen K V,et al.Crack growth characterization in single-edge notched tension testing by means of direct current potential drop measurement[J].International Journal of Pressure Vessels and Piping,2017,156(01):68-78.
[7] Hicks M A,Pickard A C.A comparison of theoretical and experimental methods of calibrating the electrical potential drop technique for crack length determination[J].International Journal of Fracture,1982,20(02):91-101.
[8] Spitas V,Spitas C,Michelis P.A three-point electrical potential difference method for in situ monitoring of propagating mixed-mode cracks at high temperature[J].Measurement,2010,43(07):950-959.
[9] Antonarulrajah A,Ramos V P,Fazluddin S B,Rand B.Evaluation of the electrical potential drop technique in the determination of crack growth resistance-curves of carbon/carbon composites and carbon bonded refractories[J].Journal of Materials Science,2005,40(05):373-380.
[10] 倪陈强,薛河,崔英浩.直流电位降法裂纹监测试验中接线点位置分析[J].热加工工艺,2016,45(24):122-125. Ni Chenqiang,Xue He,Cui Yinghao.Analysis on wire layout in crack monitoring test using direct current potential drop method[J].Hot Working Technology,2016,45(24):122-125.(in Chinese)
[11] 李正军,袁银麟,等.基于遗传算法的标准光源设计方法[J].量子电子学报,2019,36(02):143-150. Li Zhenjun,Yuan Yinlin,et al.Design method of standard light sources based on genetic algorithm[J].Chinese Journal of Quantum Electronics,2019,36(02):143-150.(in Chinese)
[12] Mayur V Andulkar,Shital S Chiddarwar.Incremental approach for trajectory generation of spray painting robot[J].Industrial Robot:An International Journal,2015,42(03):228-241.
[13] Wei S,Zheng C,Lin C.Multi-objective optimization of cooling air distribution of grate cooler with different inlet temperatures by using genetic algorithm[J].Science China (Technological Sciences),2017,60(01):345-354.
[14] Wenyu Zhang,Jiepin Ding,Yan Wang,Shuai Zhang,Zhiying Xiong.Multi-perspective collaborative scheduling using extended genetic algorithm with interval-valued intuitionistic fuzzy entropy weight method[J].Journal of Manufacturing Systems,2019,53(01):249-260.
[15] 杨泽青,张炳寅,等.自适应遗传算法在直线电机进给系统伺服参数优化中的应用研究[J].机械科学与技术,2019,1(09):08-13. Yang Z Q,Zhang Bingyan,et al.Application of adaptive genetic algorithm in servo parameter optimization of linear motor feed system[J].Mechanical Science and Technology,2019,1(09):08-13.(in Chinese)
[16] Ashtiyani M,Navaei Lavasani S,Asgharzadeh Alvar A,Deevband M R.Heart rate variability classification using support vector machine and genetic algorithm[J].Journal of Biomedical Physics & Engineering,2018,8(04):423-434.
[17] 刘尚典,赵毅强,等.基于遗传算法的少态节点活性提升方法[J].浙江大学学报(工学版),2019,53(08):1546-1551. Liu Shangdian,Zhao Yi,et al.A method to enhance the activity of few-state nodes based on genetic algorithm[J].Journal of Zhejiang University (Engineering Edition),2019,53(08):1546-1551.(in Chinese)
[18] Gholami A,et al.Uncertainty analysis of intelligent model of hybrid genetic algorithm and particle swarm optimization with ANFIS to predict threshold bank profile shape based on digital laser approach sensing[J].Measurement,2018,121(05):294-303.
[19] Jennifer Arthur,Rian Bahran,Jesson Hutchinson,Sara A Pozzi.Genetic algorithm for nuclear data evaluation applied to subcritical neutron multiplication inference benchmark experiments[J].Annals of Nuclear Energy,2019,133(01):853-862. |