[1] 肖焕辉,袁程朗,冯仕庭,等.基于深度学习的癌症计算机辅助分类诊断研究进展[J].国际医学放射杂志,2019,42(1):22-25. XIAO Huan-hui,YUAN Cheng-lang,FENG Shi-ting,et al.Research progress of computer aided diagnosis in cancer based on deep learning[J].Int J Med Radiol,2019,42(1):22-25.(in Chinese)
[2] He K M,Zhang X Y,Ren S Q,Sun J.Deep residual learning for image recognition[A].Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].Las Vegas,NV,USA:IEEE,2016.770-778.
[3] 田娟秀,刘国才,谷珊珊,等.医学图像分析深度学习方法研究与挑战[J].自动化学报,2018,44(3):401-424. TIAN Juan-xiu,LIU Guo-cai,GU Shan-shan,et al.Deep learning in medical image analysis and its challenges[J].Acta Automatica Sinica,2018,44(3):401-424.(in Chinese)
[4] Wells III W M.Medical image analysis-past,present,and future[J].Medical Image Analysis,2016,33:4-6.
[5] Geert Litjens,Thijs Kooi,Babak Ehteshami Bejnordi,et al.A survey on deep learning in medical image analysis[J].M edical Image Analysis,2017,42:60-88.
[6] AI医疗影像辅助诊断系统发展研究报告[R].海松医疗基金, http://www.oceanpinecap.com/documents/view20180205.pdf.
[7] Andreas Maier,Christopher Syben,Tobias Lasser,et al.A gentle introduction to deep learning in medical image processing[J].Computer Vision and Pattern Recognition,2019,29(2):86-101.
[8] Nibali A,He Z,Wollersheim D.Pulmonary nodule classification with deep residual networks[J].Int J Comput Assist Radiol Surg,2017,12:1799-1808.
[9] 亢寒,张荣国,陈宽.基于深度学习的医学图像分割技术[J].人工智能,2018,4:30-37.
[10] Michal Drozdzal,Eugene Vorontsov,Gabriel Chartrand,et al.The importance of skip connections in biomedical image segmentation[J].arXiv Preprint,2016,arXiv:1608.04117.
[11] He K,Zhang X,Ren S,et al.Identity mappings in deep residual networks[A].Proceedings of the 2016 Computer Vision-ECCV 14th European Conference[C].Amsterdam,Netherlands,2016.630-645.
[12] 梁蒙蒙,周涛,张飞飞,等.卷积神经网络及其在医学图像分析中的应用研究[J].生物医学工程学杂志,2018,35(6):977-985. LIANG Meng-meng,ZHOU Tao,ZHANG Fei-fei,et al.Research on convolutional neural network and its application on medical image[J].Journal of Biomedical Engineering,2018,35(6):977-985.(in Chinese)
[13] Lecun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition[J].IEEE,1998,86(11):2278-2324.
[14] Krizhevsky A,Sutskever I,Hinton G E.ImageNet classification with deep convolutional neural networks[A].International Conference on Neural Information Processing Systems[C].Lake Tahoe,USA:Curran Associates,2012.1097-1105.
[15] Szegedy C,Liu W,Jia Y Q,et al.Going deeper with convolutions[A].Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition[C].Boston,MA,USA:IEEE,2015.1-9.
[16] Ke Zhang,Miao Sun,Tony X,et al.Review:RoR-ResNet of ResNet/Multilevel ResNet (Image Classification)[J].arXiv Preprint,2017,arXiv:1608.02908.
[17] Zagoruyko S,Komodakis N.Wide residual networks[A].Proceedings of the 2016 British Machine Vision Conference[C].York,UK:BMVC,2016.1-12.
[18] Sasha Targ,Diogo Almeida,Kevin Lyman.Resnet in resnet:generalizing residual architectures[J].arXiv Preprint,2016,arXiv:1603.08029.
[19] Gao Huang,Yu Sun,Zhuang Liu,et al.Deep networks with stochastic depth[J].arXiv Preprint,2016,arXiv:1603.09382.
[20] Gao Huang,Zhuang Liu,Laurens van der Maaten,et al.Densely connected convolutional networks[J].arXiv Preprint,2017,arXiv:1608.06993.
[21] Yunpeng Chen,Jianan Li,Huaxin Xiao,et al.Dual path networks[J].arXiv Preprint,2017,arxiv:1707.01629.
[22] Szegedy C,Vanhoucke V,Ioffffe S,et al.Rethinking the inception architecture for computer vision[A].Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition[C].Las Vegas,NV,USA:IEEE,2016.2818-2826.
[23] Szegedy C,Ioffffe S,Vanhoucke V,et al.Inception-v4,Inception-ResNet and the impact of residual connections on learning[J].arXiv Preprint,2016,arXiv:1602.07261.
[24] Zoph B,Le Q V.Neural architecture search with reinforcement learning[J].arXiv Preprint,2016,arXiv:1611.01578.
[25] Barret Zoph,Vijay Vasudevan,Jonathon Shlens,et al.Learning transferable architectures for scalable image recognition[J].arXiv Preprint,2017,arXiv:1707.07012.
[26] Saining Xie,Ross Girshick,Piotr Dollár,et al.Aggregated residual transformations for deep neural networks[J].arXiv Preprint,2017,arXiv:1611.05431.
[27] Simonyan K,Zisserman A.Very deep convolutional networks for large-scale image recognition[J].arXiv Preprint,2014,arXiv:1409.1556.
[28] Lin M,Chen Q,Yan S C.Network in network[J].arXiv Preprint,2014,arXiv:1312.4400.
[29] Dai J F,Qi H Z,Xiong Y W,et al.Deformable convolutional networks[J].arXiv Preprint,2017,arXiv:1703.06211.
[30] 彭亚丽,张鲁,张钰,等.基于深度反卷积神经网络的图像超分辨率算法[J].软件学报,2018,29(4):926-934. PENG Ya-li,ZHANG Lu,ZHANG Yu,et al.Deep deconvolution neural network for image super-resolution[J].Journal of Software,2018,29(4):926-934.(in Chinese)
[31] Hao Chen,Qi Dou,Lequan Yu,et al.VoxResNet:Deep voxel wise residual networks for brain segmentation from 3D MR images[J].Neuro Image,2018,170:446-455.
[32] He K M,Zhang X Y,Ren S Q,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
[33] Nal Kalchbrenner,Edward Grefenstette,Phil Blunsom.A convolutional neural network for modelling sentences[J].arXiv Preprint,2015,arXiv:1404.2188.
[34] Zhiqiang Tong,Gouhei Tanaka.Hybrid pooling for enhancement of generalization ability in deep convolutional neural networks[J].Neurocomputing,2019,333:76-85.
[35] 张振焕,周彩兰,梁媛.基于残差的优化卷积神经网络服装分类算法[J].计算机工程与科学,2018,40(2):355-360. ZHANG Zhen-huan,ZHOU Cai-lan,LIANG Yuan.An optimized clothing classification algorithm based on residual convolutional neural network[J].Computer Engineering & Science,2018,40(2):355-360.(in Chinese)
[36] 汪家明,卢涛.多尺度残差深度神经网络的卫星图像超分辨率算法[J].武汉工程大学学报,2018,40(04):439-443. WANG Jia-ming,LU Tao.Satellite imagery super-resolution algorithm via multi-scale residual deep neural network[J].Journal of Wuhan Institute of Technology,2018,40(04):439-443.(in Chinese)
[37] Yifeng Xu,Huigang Wang,Xing Liu,et al.An improved multi-branch residual network based on random multiplier and adaptive cosine learning rate method[J].Journal of Visual Communication and Image Representation,2019,59:363-370.
[38] Linlin Shen,Xi Jia,Yuexiang Li.Deep cross residual network for HEp-2 cell staining pattern classification[J].Pattern Recognition,2018,82:68-78.
[39] Alexandre Boulch.Reducing parameter number in residual networks by sharing weights[J].Pattern Recognition Letters,2018,103:53-59.
[40] 陈良甫,杨曾.一种基于残差网络的多任务模型[J].中国集成电路,2017,26(8):64-71. CHEN Liang-fu,YANG Zeng.A residual network based multi-task model[J].China Integrated Circult,2017,26(8):64-71.(in Chinese)
[41] 戴加明,佟继周.基于深度残差网络的星系形态分类[J].天文学进展,2018,36(20):385-397. DAI Jia-ming,TONG Ji-zhou.Galaxy morphology classification with deep convolutional neural networks[J].Progress in Astronomy,2018,36(20):385-397.(in Chinese)
[42] Long J,Shelhamer E,Darrell T.Fully convolutional networks for semantic segmentation[A].Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition[C].Boston,Massachusetts,USA:IEEE,2015.3431-3440.
[43] Sreela S R,Sumam Mary Idicula.Action recognition in still images using residual neural network features[J].Procedia Computer Science,2018,143:563-569.
[44] Dandan Zhu,Ye Luo,Lei Dai,et al.Salient object detection via a local and global method based on deep residual network[J].Journal of Visual Communication and Image Representation,2018,54:1-9.
[45] Haijun Lei,Tao Han,Feng Zhou,et al.A deeply supervised residual network for HEp-2 cell classification via cross-modal transfer learning[J].Pattern Recognition,2018,79:290-302.
[46] Themos Stafylakisa,Muhammad Haris Khanab,Georgios Tzimiropoulosa.Pushing the boundaries of audiovisual word recognition using residual networks and LSTMs[J].Computer Vision and Image Understanding,2018,176-177:22-32.
[47] Hoang Ngan Le T,Chi Nhan Duong,Ligong Han,et al.Deep contextual recurrent residual networks for scene labeling[J].Pattern Recognition,2018,80:32-41.
[48] Hyojoo Son,Hyunchul Choi,Hyeonwoo Seong,et al.Detection of construction workers under varying poses and changing background in image sequences via very deep residual networks[J].Automation in Construction,2019,99:27-38.
[49] Junbo Zhang,Yu Zheng,Dekang Qi,et al.Predicting citywide crowd flows using deep spatio-temporal residual networks[J].Artificial Intelligence,2018,259:147-166.
[50] 郝旭政,柴争义.一种改进的深度残差网络行人检测方法[J].计算机应用研,2019,36(6):http://www.arocmag.com/article/02-2019-06-057.html. HAO Xu-zheng,CHAI Zheng-yi.Improved pedestrian detection method based on depth residual network[J].Application Research of Computers,2019,36(6):http://www.arocmag.com/article/02-2019-06-057.html.(in Chinese)
[51] 郑光远,刘峡壁,韩光辉.医学影像计算机辅助检测与诊断系统综述[J].软件学报,2018,29(5):1471-1514. ZHENG Guang-yuan,LIU Xia-bi,HAN Guang-hui.Survey on medical image computer aided detection and diagnosis systems[J].Journal of Software,2018,29(5):1471-1514.(in Chinese)
[52] 刘振丙,方旭升,杨辉华,等.基于多尺度残差神经网络的阿尔茨海默病诊断分类[J].山东大学学报(工学版),2018,48(06):1-7+18. LIU Zhen-bing,FANG Xu-sheng,YANG Hui-hua,et al.The diagnosis of Alzheimer's disease classification based on multi-scale residual neutral network[J].Journal of Shandong University (Engineering Science),2018,48(06):1-7+18.(in Chinese)
[53] 应自炉,龙祥.多尺度密集残差网络的单幅图像超分辨率重建[J].中国图象图形学报,2019,24(3):0410-0419. YING Zi-lu,LONG Xiang.Single-image super-resolution construction based on multi-scale dense residual network[J].Journal of Image and Graphics,2019,24(3):0410-0419.(in Chinese)
[54] Songtao Guo,Zhouwang Yang.Multi-Channel-ResNet:An integration framework towards skin lesion analysis[J].Informatics in Medicine Unlocked,2018,12:67-74.
[55] Ruikai Zhang,Yali Zheng,Carmen C,et al.Polyp detection during colonoscopy using a regression-based convolutional neural network with a tracker[J].Pattern Recognition,2018,83:209-219.
[56] Ziba Gandomkar,Patrick C.Brennan,et al.MuDeRN:Multi-category classification of breast histopathological image using deep residual networks[J].Artificial Intelligence in Medicine,2018,88:14-24.
[57] Feng Sha,Seid Miad Zandavi,Yuk Ying Chung.Fast deep parallel residual network for accurate super resolution image processing[J].Expert Systems with Applications,2019,128:157-168.
[58] 姚宇瑾,张利.基于混合损失联合调优与多尺度分类相结合的肺结节检测算法[J].计算机应用研究,2019,36(9):http://www.arocmag.com/article/02-2019-09-020.html. YAO Yu-jin,ZHANG Li.Pulmonary nodule detection via hybrid loss based joint fine-tuning and multi-scale classification[J].Application Research of Computers,2019,36(9):http://www.arocmag.com/article/02-2019-09-020.html.(in Chinese)
[59] 胡海根,孔祥勇,周乾伟,等.基于深层卷积残差网络集成的黑色素瘤分类方法[J].计算机科学,2019,46(5):248-253. HU Hai-gen,KONG Xiang-yong,ZHOU Qian-wei,et al.Melanoma classification method by integrating deep convolutional residual network[J].Computer Science,2019,46(5):248-253.(in Chinese)
[60] 戴垚均,宋成利,闫士举.基于密集网络改进的肺结节良恶性分类模型[J].中国医学影像技术,2018,34(7):1104-1109. DAI Yao-jun,SONG Cheng-li,YAN Shi-ju.Benign or malignant lung nodules classification model based on modified DenseNet[J].China J Med Imaging Technol,2018,34(7):1104-1109.(in Chinese)
[61] 李航,余镇,倪东,等.基于深度残差网络的皮肤镜图像黑色素瘤的识别[J].中国生物医学工程学报,2018,37(3):275-282. LI Hang,YU Zhen,NI Dong,et al.Melanoma recognition indermoscopy images via deep residual network[J].Chinese Journal of Biomedical Engineering,2018,37(3):274-282.(in Chinese)
[62] 罗希平,田捷.一种改进的交互式医学图像序列分割方法[J].电子学报,2003,31(1):30-32. LUO Xi-ping,TIAN Jie.A modified interactive segmentation of medical image series[J].Acta Electronica Sinica,2003,31(1):30-32.(in Chinese)
[63] Mahendra Khened,Varghese Alex Kollerathu,Ganapathy Krishnamurthi.Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers[J].Medical Image Analysis,2019,51:21-45.
[64] Rui Zhang,Lin Huang,Wei Xia,et al.Multiple supervised residual network for osteosarcoma segmentation in CT images[J].Computerized Medical Imaging and Graphics,2018,63:1-8.
[65] Juan Mo,Lei Zhang,Yangqin Feng.Exudate-based diabetic macular edema recognition in retinal images using cascaded deep residual networks[J].Neurocomputing,2018,290:161-171.
[66] Guofeng Tong,Yong Li,Huairong Chen,et al.Improved U-NET network for pulmonary nodules segmentation[J].Optik,2018,174:460-469.
[67] Md Zahangir Alom,Mahmudul Hasan,Chris Yakopcic,et al.Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation[J].arXiv Preprint,2018,arXiv:1082.06955.
[68] 徐光柱,胡松,陈莎,等.U-Net与DenseNet相结合的视网膜血管提取[J].中国图象图形学报,2019,24(9):1569-1580. XU Guang-zhu,HU Song,CHEN Sha,et al.Retinal blood vessel extraction by combining U-net and Dense-net[J].Jourmal of Image and Graphics,2019,24(9):1569-1580.(in Chinese)
[69] 周沛,陈后金,于泽宽,等.跨模态医学图像预测综述[J].电子学报,2019,47(1):221-226. ZHOU Pei,CHEN Hou-Jin,YU Ze-kuan,et al.Review of cross-modality medical image prediction[J].Acta Electronica Sinica,2019,47(1):220-226.(in Chinese) |