多策略集成的樽海鞘群算法的机器人路径规划

王秋萍, 王彦军, 戴芳

电子学报 ›› 2020, Vol. 48 ›› Issue (11) : 2101-2113.

PDF(1421 KB)
PDF(1421 KB)
电子学报 ›› 2020, Vol. 48 ›› Issue (11) : 2101-2113. DOI: 10.3969/j.issn.0372-2112.2020.11.003
学术论文

多策略集成的樽海鞘群算法的机器人路径规划

  • 王秋萍, 王彦军, 戴芳
作者信息 +

Multi-Strategy Ensemble Salp Swarm Algorithm for Robot Path Planning

  • WANG Qiu-ping, WANG Yan-jun, Dai Fang
Author information +
文章历史 +

摘要

针对求解机器人路径规划问题,本文提出了一种多策略集成的樽海鞘群算法.在该算法中,提出了新的自适应领导者结构,以平衡算法的探索和开发能力;引入可以提高Lyapunov指数的Logistic-Cubic级联混沌映射作为食物源的扰动算子,来避免算法陷入局部最优;采用基于自适应参数的分散觅食策略使部分追随者探索有前景的区域.在CEC 2014测试集的多种函数上,本文算法与3种改进的樽海鞘群算法和5种先进的群智能算法进行比较,结果表明本文算法综合优化性能更好.本文算法2将其用于求解机器人路径规划问题,其中用三次样条插值对路径进行平滑.在障碍是8,9,13的环境下分别进行仿真实验,仿真结果表明,本文算法在给定的仿真场景下与给定的对比算法相比获得了最好的结果.

Abstract

A multi-strategy ensemble salp swarm algorithm is proposed for solving problem of robot path planning. In the algorithm, a new adaptive leader structure is proposed to balance the exploration and exploitation ability of the algorithm. The chaotic map of Logistic-Cubic cascade which can improve the Lyapunov exponent of the cascade chaotic system is introduced as the disturbance operator of the food source to avoid the algorithm falling into the local optimum. A disperse foraging strategy based on adaptive parameters is adopted to force a part of followers to explore promising areas. The algorithm in this paper is compared with three improved SSA algorithms and five state-of-the-art swarm intelligence algorithms on IEEE CEC 2014 functions. The results show that the comprehensive optimization performance of the algorithm in this paper is better. The proposed algorithm is applied to solve the robot path planning problem, in which the path is smoothed by cubic spline interpolation. Simulation experiments are implemented on computer in the environments where the obstacles are 8, 9, 13, respectively. The simulation results demonstrate that the proposed algorithm can achieve the best results compared with the given contrast algorithms in given simulation scenarios.

关键词

樽海鞘群算法 / 路径规划 / Lyapunov指数 / 级联混沌 / 三次样条

Key words

salp swarm algorithm / path planning / Lyapunov exponent / cascade chaotic / cubic spline

引用本文

导出引用
王秋萍, 王彦军, 戴芳. 多策略集成的樽海鞘群算法的机器人路径规划[J]. 电子学报, 2020, 48(11): 2101-2113. https://doi.org/10.3969/j.issn.0372-2112.2020.11.003
WANG Qiu-ping, WANG Yan-jun, Dai Fang. Multi-Strategy Ensemble Salp Swarm Algorithm for Robot Path Planning[J]. Acta Electronica Sinica, 2020, 48(11): 2101-2113. https://doi.org/10.3969/j.issn.0372-2112.2020.11.003
中图分类号: TP242   

参考文献

[1] 薛裕颖,张祥银,张国梁,等.基于量子行为烟花算法的移动机器人路径规划及平滑[J].控制理论与应用,2019,36(9):1398-1408. XUE Yu-ying,ZHANG Xiang-yin,ZHANG Guo-liang,et al.Path planning and smoothing based on quantum-behaved fireworks algorithm for mobile robot[J].Control Theory & Applications,2019,36(9):1398-1408.(in Chinese)
[2] 许凯波,鲁海燕,黄洋,等.基于双层蚁群算法和动态环境的机器人路径规划方法[J].电子学报,2019,47(10):2166-2176. XU Kai-bo,LU Hai-yan,HUANG Yang,et al.Robot path planning based on double-layer ant colony optimization algorithm and dynamic environment[J].Acta Electronica Sinica,2019,47(10):2166-2176.(in Chinese)
[3] 尹高扬,周绍磊,吴青坡.基于改进RRT算法的无人机航迹规划[J].电子学报,2017,45(7):1764-1769. YIN Gao-yang,ZHOU Shao-lei,WU Qing-po.An improved RRT algorithm for UAV path planning[J].Acta Electronica Sinica,2017,45(7):1764-1769.(in Chinese)
[4] 刘景森,吉宏远,李煜.基于改进蝙蝠算法和三次样条插值的机器人路径规划[J/OL].自动化学报, http://kns.cnki.net/kcms/detail/11.2109.TP.20190325.1534.003.html.2019-03-25. LIU Jing-Sen,JI Hong-Yuan,LI Yu.Robot path planning based on improved bat algorithm and cubic spline interpolation[J/OL].Acta Automatica Sinica,http://kns.cnki.net/kcms/detail/11.2109.TP.20190325.1534.003.html.2019-03-25.(in Chinese)
[5] 贾会群,魏仲慧,何昕,等.基于改进粒子群算法的路径规划[J].农业机械学报,2018,49(12):371-377. JIA Huiqun,WEI Zhonghui,HE Xin,et al.Path planning based on improved particle swarm optimization algorithm[J].Transactions of the Chinese Society for Agricultural Machinery,2018,49(12):371-377.(in Chinese)
[6] Mirjalili S,Gandomi A H,Mirjalili S Z,et al.Salp swarm algorithm:A bio-inspired optimizer for engineering design problems[J].Advances in Engineering Software,2017,114(6):163-191.
[7] Faris H,Mafarja M M,Heidari A A,et al.An efficient binary salp swarm algorithm with crossover scheme for feature selection problems[J].Knowledge-Based Systems,2018,154:43-67.
[8] Sayed G I,Khoriba G,Haggag M H.A novel chaotic salp swarm algorithm for global optimization and feature selection[J].Applied Intelligence,2018,48(10):3462-3481.
[9] 杨博,钟林恩,朱德娜,等.部分遮蔽下改进樽海鞘群算法的光伏系统最大功率跟踪[J].控制理论与应用,2019,36(3):339-352. YANG Bo,ZHONG Lin-en,ZHU De-na,et al.Modified salp swarm algorithm based maximum power point tracking of power-voltage system under partial shading condition[J].Control Theory & Applications,2019,36(3):339-352.(in Chinese)
[10] Mohammed H Qais,Hany M Hasanien,Saad Alghuwainem.Enhanced salp swarm algorithm:Application to variable speed wind generators[J].Engineering Applications of Artificial Intelligence,2018,80:82-96.
[11] Ibrahim Aljarah,Majdi Mafarja,Ali Asghar Heidari,et al.Asynchroous accelerating multi-leader salp chains for feature selection[J].Applied Soft Computing,2018,71:964-979.
[12] 王光义,袁方.级联混沌及其动力学特性研究[J].物理学报,2013,62(2):020506. Wang Guang-Yi,Yuan Fang.Cascade chaos and its dynamic characteristics[J].Acta Physica Sinica,2013,62(2):020506.(in Chinese)
[13] Tu Q,Chen X,Liu X.Multi-strategy ensemble grey wolf optimizer and its application to feature selection[J].Applied Soft Computing,2019,76:16-30.
[14] Liang J J,Qu B Y,Suganthan P N.Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization[R].Zhengzhou:Zhengzhou University,2013.
[15] 张达敏,陈忠云,辛梓芸,等. 基于疯狂自适应的樽海鞘群算法[J].控制与决策,2020,35(9):2112-2120. ZHANG Da-min,CHEN Zhong-yun,XIN Zi-yun,et al.Salp swarm algorithm based on craziness and adaptive[J].Control and Decision,2020,35(9):2112-2120.(in Chinese)
[16] Mirjalili S,Mirjalili S M,Lewis A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69:46-61.
[17] Gandomi A H,Alavi A H.Krill herd:A new bio-inspired optimization algorithm[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(12):4831-4845.
[18] Mirjalili S,Abdolreza H.Multi-verse optimizer:A nature-inspired algorithm for global optimization[J].Neural Computing and Applications,2016,27(2):495-513.
[19] Heidari A A,Mirjalili S,Faris H,et al.Harris hawks optimization:Algorithm and applications[J].Future Generation Computer Systems,2019,97:849-872.
[20] Zhang Q,Chen D,Chen T.An obstacle avoidance method of soccer robot based on evolutionary artificial potential field[J].Energy Procedia,2012,16:1792-1798.
[21] Liu Yuanchang,Bucknall Richard.The angle guidance path planning algorithms for unmanned surface vehicle formations by using the fast marching method[J].Applied Ocean Research,2016,59:327-344.

基金

国家自然科学基金 (No.61976176)
PDF(1421 KB)

1457

Accesses

0

Citation

Detail

段落导航
相关文章

/