[1] ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
[2] BELKIN M,NIYOGI P.Laplacian eigenmaps and spectral techniques for embedding and clustering[J].Advances in Neural Information Processing Systems,2002,14(6):585-591.
[3] CAO S,LU W,XU Q.GraRep:Learning graph representations with global structural information[A].ACM International on Conference on Information and Knowledge Management[C].USA:ACM,2015.891-900.
[4] PEROZZI B,A1-RFOU R,SKIENA S.Deep Walk:online learning of social representations[A].ACM Sigkdd International Conference on Knowledge Discovery & Data Mining[C].USA:ACM,2014.701-710.
[5] GROVER A,LESKOVEC J.Node2vec:Scalable feature learning for networks[A].ACM Sigkdd International Conference on Knowledge Discovery & Data Mining[C].USA:ACM,2016.855-864.
[6] WANG D,CUI P,ZHU W.Structural deep network embedding[A].ACM Sigkdd International Conference on Knowledge Discovery & Data Mining[C].USA:ACM,2016.1225-1234.
[7] WANG Hongwei,WANG Jia,WANG Jialin,et al.GraphGAN:graph representation learning with generative adversarial nets[A].Thirty-Second AAAI Conference on Artificial Intelligence[C].USA:AAAI,2018.2508-2515.
[8] DAI Q,LI Q,TANG J,et al.Adversarial network embedding[A].Thirty-Second AAAI Conference on Artificial Intelligence[C].USA:AAAI,2018.2167-2174.
[9] LI J,DANI H,HU X,et al.Attributed network embedding for learning in a dynamic environment[A].Proceedings of the 2017 ACM on Conference on Information and Knowledge Management[C].USA:ACM,2017.387-396.
[10] ZHU D,CUI P,ZHANG Z,et al.High-order proximity preserved embedding for dynamic networks[J].IEEE Transactions on Knowledge and Data Engineering,2018,30(11):2134-2144.
[11] ZHANG Z,CUI P,PEI J,et al.Timers:Error-bounded SVD restart on dynamic networks[A].Thirty-Second AAAI Conference on Artificial Intelligence[C].USA:AAAI,2018.224-231.
[12] TANG J,QU M,WANG M,et al.LINE:Large-scale information network embedding[A].Proceedings of the 24th International Conference on World Wide Web[C].USA:ACM,2015.1067-1077.
[13] DU L,WANG Y,SONG G,et al.Dynamic network embedding:An extended approach for skip-gram based network embedding[A].International Joint Conferences on Artificial Intelligence Organization[C].IJCAI,2018.2086-2092.
[14] GOYAL P,KAMRA N,HE X,et al.Dyngem:Deep embedding method for dynamic graphs[A].International Joint Conference on Artificial Intelligence (International Workshop on Representation Learning for Graphs)[C].IJCAI,2017.arXiv:1805.11273.
[15] ZUO Y,LIU G,LIN H,et al.Embedding temporal network via neighborhood formation[A].Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining[C].USA:ACM,2018.2857-2866.
[16] ZHOU L,YANG Y,REN X,et al.Dynamic network embedding by modeling triadic closure process[A].Thirty-Second AAAI Conference on Artificial Intelligence[C].USA:AAAI,2018.571-578.
[17] HAWKES A G.Spectra of some self-exciting and mutually exciting point processes[J].Biometrika,1971,58(1):83-90.
[18] MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[A].Advances in Neural Information Processing Systems[C].MIT,2013.3111-3119.
[19] BOTTOU,L.Stochastic gradient learning in neural networks[J].Proceedings of Neuro Nimes,1991,91(8):12.
[20] MOREIRA C,CALADO P,MARTINS B.Learning to rank academic experts in the DBLP dataset[J].Expert Systems,2015,32(4):477-493.
[21] TANG J,GAO H,LIU H.mTrust:discerning multi-faceted trust in a connected world[A].Proceedings of the Fifth ACM International Conference on Web Search and Data Mining[C].USA:ACM,2012.93-102.
[22] PANDHRE S,MITTAL H,GUPTA M,et al.STwalk:learning trajectory representations in temporal graphs[A].Proceedings of the ACM India Joint International Conference on Data Science and Management of Data[C].USA:ACM,2018.210-219. |