[1] Kong X,Xia F,Wang J,et al.Time-location-relationship combined service recommendation based on taxi trajectory data[J].IEEE Transactions on Industrial Informatics,2017,13(3):1202-1212.
[2] 廖律超,蒋新华,邹复民,等.一种支持轨迹大数据潜在语义相关性挖掘的谱聚类方法[J].电子学报,2015,43(5):126-134. LIAO Lü-chao,JIANG Xin-hua,ZOU Fu-min,et al.A spectral clustering method for big trajectory data mining with latent semantic correlation[J].Acta Electronica Sinica,2015,43(5):126-134.(in Chinese)
[3] Li X,Gao C,et al.Rank-GeoFM:A ranking based geographical factorization method for point of interest recommendation[A].Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval[C].New York:ACM,2015.433-442.
[4] 宋飞,李蓉,张思东,等.基于趋势预测的合乘收益研究[J].电子学报,2014,42(7):1353-1359. SONG Fei,LI Rong,ZHANG Si-dong,et al.The research on taxi sharing benefit based on tendency estimation[J].Acta Electronica Sinica,2014,42(7):1353-1359.(in Chinese)
[5] Liu Y,Liu J,Wang J,et al.Recommending a personalized sequence of pick-up points[J].Advances in Services Computing.Springer International Publishing,2016,10065:278-291.
[6] 王晓文.基于载客热点区域的出租车巡游路径推荐方法的研究与实现[D].山东,青岛:中国海洋大学,2015. Wang Xiaowen.Research and Implementation on Taxi Cruise Path Recommendation Method Based on Pick-up Hotspots Areas[D].Shangdong,Qingdao:Ocean University of China,2015.(in Chinese).
[7] Yang Q,Gao Z,Kong X,et al.Taxi operation optimization based on big traffic data[A].IEEE International Conference on Ubiquitous Intelligence and Computing[C].Beijing:IEEE,2015.127-134.
[8] Yuan J,Zheng Y,Zhang L,et al.Where to find my next passenger[A].Proceedings of the 13th International Conference on Ubiquitous computing[C].Beijing:ACM,2011.109-118.
[9] 任星怡,宋美娜,宋俊德.基于位置社交网络的上下文感知的兴趣点推荐[J].计算机学报,2017,40(4):824-841. Ren Xing-Yi.Song Mei-Na.Song Jun-De.Context-aware point-of-interest recommendation in location-based social networks[J].Chinese Journal of Computers,2017,40(4):824-841.(in Chinese)
[10] Liu L,Wu C,Zhang H,et al.Research on taxi drivers' passenger hotspot selecting patterns based on GPS data:A case study in Wuhan[A].International Conference on Transportation Information and Safety[C].Banff,Canada:IEEE,2017.432-441.
[11] Jiang W,Lian J,Shen M,et al.A multi-period analysis of taxi drivers' behaviors based on GPS trajectories[A].International Conference on Intelligent Transportation Systems[C].New York:IEEE,2018.1-6.
[12] Zhang D,Sun L,Li B,et al.Understanding taxi service strategies from taxi GPStraces[J].IEEE Transactions on Intelligent Transportation Systems,2015,16(1):123-135.
[13] Wang Y,Zheng Y,Xue Y.Travel time estimation of a path using sparse trajectories[A].ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].New York:ACM,2014.25-34.
[14] 向隆刚,邵晓天.载体轨迹停留信息提取的核密度法及其可视化.测绘学报,2016,45(9):1122-1131. Xiang Long-Gang,Shao Xiao-Tian.Visualization and extraction of trajectory stops based on kernel-density[J].Acta Geodaetica et Cartographica Sinica,2016,45(9):1122-1131.(in Chinese)
[15] Lian D,Zhao C,Xie X,et al.GeoMF:joint geographical modeling and matrix factorization for point-of-interest recommendation[A].ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].New York:ACM,2014.831-840.
[16] Zhang W,Wang J,Feng W.Combining latent factor model with location features for event-based group recommendation[A].The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].USA:ACM,2013.910-918.
[17] 李玉省.个性化推荐系统关键技术研究[D].北京:北京邮电大学,2016. Li Yu-Sheng.Research on Some Key Technologies of Personalization Recommendation System.[D].Beijing:Beijing University of Posts and Telecommunications,2016.(in Chinese)
[18] Tang J,Jiang H,Li Z,et al.A two-layer model for taxi customer searching behaviors using GPS trajectory data[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(11):3318-3324.
[19] Qi H,Liu P.Mining taxi pick-up hotspots based on spatial clustering[A].2018 IEEE Smart World,Ubiquitous Intelligence & Computing,Advanced & Trusted Computing,Scalable Computing & Communications,Cloud & Big Data Computing,Internet of People and Smart City Innovation[C].Guangzhou:IEEE,2018.1711-1717. |