[1] Wu Z,Shi P,Su H,Chu J.Exponential synchronization of neural networks with discrete and distributed delays under time-varying sampling[J].IEEE Trans Neural Netw Learn Syst.2012,23(9):1368-1376.
[2] Liu Y,Guo B,Park J,Lee S.Nonfragile exponential synchronization of delayed complex dynamical networks with memory sampled-data control[J].IEEE Transactions on Neural Networks & Learning Systems,2016,29(1):118-128.
[3] Han X,Wu H,Fang B.Adaptive exponential synchronization of mem-ristive neural networks with mixed time-varying delays[J].Neurocomputing,2016,20(3):40-50.
[4] Chen C,Li L,Peng H,Yang Y,Li T.Finite-time synchronization of memristor-based neural networks with mixed delays[J].Neurocomputing,2017,235(16):83-89.
[5] MAO B X.Four methods for sliding mode synchronization of fractional-order new hyperchaotic system[J].Paper Asia,2018,12(5):118-122.
[6] 付景超,张中华.超混沌Bao系统状态线性反馈控制及自适应控制[J].控制与决策,2016,31(9):1707-1710. FU J C,ZHANG Z H.Linear state feedback control and adaptive backstepping control of hyperchaotic Bao system[J].Control and Decision,2016,31(9):1707-1710.(in Chinese)
[7] 毛北行.分数阶Newton-Leipnik混沌系统滑模同步的两种方法[J].吉林大学学报(理学版),2018,56(3):708-712. MAO B X.Two methods for sliding mode synchronization of fractional-order Newton-Leipnik chaotic systems[J].Journal of Jilin university(Science Edition),2018,56(3):708-712.(in Chinese)
[8] 毛北行,程春蕊.分数阶二次非线性Sprott混沌系统的滑模同步控制[J].数学杂志,2018,38(3):490-496. MAO B X,CHENG C R.Sliding mode synchronization of fractional-order qyadratic nonlinear sprott chaotic systems[J].Journal of mathematics,2018,38(30):490-496.(in Chinese)
[9] 朱涛,张广军,姚宏,等.滑模控制的时滞分数阶金融系统混沌同步[J].深圳大学学报理工版,2014,31(6):626-629. ZHU T,ZHANG G J,YAO H,et,al.Chaos synchronization of fractional order financial ystems with time-delay based on sliding control[J].Journal of Shenzhen University Science and Engineering,2014,31(6):626-629.(in Chinese)
[10] 毛北行.纠缠混沌系统的比例积分滑模同步[J].山东大学学报(工学版),2018,48(4):50-54. MAO B X.Ratio integral slding mode synchronization of entanglement chaotic system[J].Journal of Shandong university(Engineering Science Edition),2018,48(4):50-54.(in Chinese)
[11] SARA H,HEYDAR T S.Design of nonlinear conformable fractional-order sliding mode controller for a class of nonlinear systems[J].Journal of control,Automation and Electrical Systems,2019,35(3):313-338.
[12] A A Kilbas,H M Srivastava,J J Trujillo.Theory and applications of fractional differential equations.[J].Elssevier,2014,2951-2974.
[13] LI Y,CHEN Y Q,I PODLUBNY.Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized Mittag-Leffler stability[J].Computers and Mathematics with Applications,2010,59(2):1810-1821. |